摘要:
A process and catalyst for catalytic cracking comprising a non-layered, ultra-large pore crystalline material. The crystalline material preferably has a benzene adsorption capacity greater than about 15 grams benzene/100 grams at 50 torr and 25.degree. C. Preferred materials have a hexagonal electron diffraction pattern that can be indexed with a d.sub.100 value greater than about 18 Angstrom Units and a hexagonal arrangement of uniformly sized pores with a maximum perpendicular cross section of at least about 13 Angstrom units. Preferred cracking catalysts comprise ultra-large pore materials having pore openings formed by at least 20 tetrahedrally coordinated members, most preferably with 36 or 42 tetahedrally coordinated members.
摘要:
A process for naphtha cracking employing new synthetic catalyst of ultra-large pore crystalline material. The new crystalline material exhibits unusually large sorption capacity demonstrated by its benzene adsorption capacity of greater than about 15 grams benzene/100 grams at 50 torr and 25.degree. C., a hexagonal electron diffraction pattern that can be indexed with a d.sub.100 value greater than about 18 Angstrom Units and a hexagonal arrangement of uniformly sized pores with a maximum perpendicular cross section of at least about 13 Angstrom units.An improved cracking reaction is provided for catalytic conversion of hydrocarbon feedstock which comprises contacting the feedstock under catalytic conversion conditions with acid metallosilicate solid catalyst having the structure of MCM-41 with hexagonal honeycomb lattice structure consisting essentially of uniform pores in the range of about 20 to 100 Angstroms. The cracking reaction is very selective, especially when conducted at temperature of about 425.degree. to 650.degree. C.
摘要:
There is provided a method for synthesizing a new synthetic composition of ultra-large pore crystalline material which can be used as a sorbent or catalyst component for conversion of organic and inorganic compounds. The crystalline material product of this method exhibits unusually large sorption capacity demonstrated by its benzene adsorption capacity of greater than about 15 grams benzene/100 grams at 50 torr and 25.degree. C. This material may have a hexagonal electron diffraction pattern that can be indexed with a d.sub.100 value greater than about 18 Angstom Units and a hexagonal arrangement of uniformly sized pores with a maximum perpendicular cross section of at least about 13 Angstrom Units. The reaction mixture for preparing this material contains a hydrolyzable source of alumina such as aluminum (isopropoxide).sub.2 acetoacetic ester chelate, and a hydrolyzable source of silica, such as tetraethylorthosilicate.
摘要:
A hydrocracking catalyst with improved distillate selectivity comprises, in addition to a metal component, a mesoporous crystalline material together with a molecular sieve component of relatively smaller pore size. The metal component of the catalyst is preferably associated with the high-surface area mesoporous component and high-metal loadings can be achieved in order to give good hydrogenation activity to the catalyst. The relatively smaller pore size component is preferably a large pore size zeolite such as zeolite Y or an intermediate pore size zeolite such as ZSM-5; this component provides a higher level of acidic functionality than the mesoporous component, achieving a functional separation in the hydrocracking process, permitting the metals loading and acidic activities to be optimized for good catalyst selectivity and activity. The catalysts enable the distillate selectivities comparable to amorphous catalyst to be achieved with improved conversion activity.
摘要:
A method for synthesizing an ultra-large pore crystalline material which can be used as a sorbent or catalyst component for conversion of organic and inorganic compound is improved through the addition of a strong acid to the reaction mixture.
摘要:
This invention relates to a method for synthesizing a new synthetic composition of ultra-large pore crystalline material which can be used as a sorbent or catalyst component for conversion of organic and inorganic compounds. The crystalline material product of this method exhibits unusually large sorption capacity demonstrated by its benzene adsorption capacity of greater than about 15 grams benzene/100 grams at 50 torr and 25.degree. C., a hexagonal electron diffraction pattern that can be indexed with a d.sub.100 value greater than about 18 Angstrom Units and a hexagonal arrangement of uniformly sized pores with a maximum perpendicular cross section of at least about 13 Angstrom units.
摘要:
Granular molecular sieve may be obtained, without necessitating any activng treatment, by subjecting a vinylidene chloride copolymer to a thermal carbonization treatment for removal of hydrochloric acid, pulverizing the resultant product to a grain size smaller than 100 mesh size, adding 15 to 35 parts by weight of a carbonaceous sintering agent and 8 to 15 parts by weight of an organic pelletizer capable of gas generation by heating to 100 parts by weight of the pulverized product, pelletizing the resultant mixture and carbonizing the resultant pellets at a temperature of 400 to 900.degree. C for a period of 2 to 6 hours. The pore diameter of this molecular sieve can be suitably controlled within a range of from 5 to 10 A by appropriately selecting the sintering agent and pelletizer employed and the conditions of the thermal treatment.
摘要翻译:可以通过使偏二氯乙烯共聚物进行热碳化处理除去盐酸,将所得产物粉碎成小于100目尺寸的粒度,加入15〜35份的方法,得到粒状分子筛,而不需要任何活化处理 碳质烧结剂的重量和8〜15重量份能够通过加热至100重量份粉碎产物而产生气体的有机造粒机,造粒所得混合物并在400-900℃的温度下碳化所得颗粒。 C 2至6小时。 通过适当选择所使用的烧结剂和造粒机以及热处理条件,可以将该分子筛的孔径适当地控制在5〜10A的范围内。
摘要:
A composition of matter is provided comprising hierarchically ordered crystalline microporous material having well-defined long-range mesoporous ordering of lamellar symmetry. The composition possesses mesopores having walls of crystalline microporous material and a mass of mesostructure between mesopores of crystalline microporous material. Long-range ordering is defined by presence of secondary peaks in an X-ray diffraction (XRD) pattern and/or lamellar symmetry observable by microscopy.
摘要:
A nanotherapeutic supported by a hierarchical silica composite with dual imaging capability (e.g. fluorescence and magnetic resonance imaging), a method of preparing the nanotherapeutic, and a method of treating cancer. Also disclosed is a method of oxidatively dehydrogenating ethane using a catalytic system supported by a hierarchical silica composite.
摘要:
A nanotherapeutic supported by a hierarchical silica composite with dual imaging capability (e.g. fluorescence and magnetic resonance imaging), a method of preparing the nanotherapeutic, and a method of treating cancer. Also disclosed is a method of oxidatively dehydrogenating ethane using a catalytic system supported by a hierarchical silica composite.