Abstract:
A high voltage gas switch includes a gas-tight housing containing an ionizable gas at a preselected gas pressure. The gas switch includes a gas-tight housing containing an ionizable gas at a gas pressure selected based upon a Paschen curve for the ionizable gas, where the Paschen curve plots breakdown voltages of the ionizable gas as a function of gas pressure multiplied by grid-to-anode distance, and where values of gas pressure multiplied by grid-to-anode distance increase over at least a portion of the Paschen curve in conjunction with increasing breakdown voltages. The gas switch also includes an anode disposed within the gas-tight housing, a cathode disposed within the gas-tight housing, and a control grid positioned between the anode and the cathode, where the control grid is spaced apart from the anode by a grid-to-anode distance selected based upon a desired operating voltage.
Abstract:
A gas switch includes a gas-tight housing containing an ionizable gas, an anode disposed within the gas-tight housing, and a cathode disposed within the gas-tight housing, where the cathode includes a conduction surface. The gas switch also includes a control grid positioned between the anode and the cathode, where the control grid is arranged to receive a bias voltage to establish a conducting plasma between the anode and the cathode. In addition, the gas switch includes a plurality of magnets selectively arranged to generate a magnetic field proximate the conduction surface that reduces the kinetic energy of charged particles striking the conduction surface and raises the conduction current density at the cathode surface to technically useful levels.
Abstract:
An ion source has an arc chamber having an arc chamber body. An electrode extends into an interior region of the arc chamber body, and a cathode shield has a body that is cylindrical having an axial hole. The axial hole is configured to pass the electrode therethrough. First and second ends of the body have respective first and second gas conductance limiters. The first gas conductance limiter extends from an outer diameter of the body and has a U-shaped lip. The second gas conductance limiter has a recess for a seal to protect the seal from corrosive gases and maintain an integrity of the seal. A gas source introduces a gas to the arc chamber body. A liner has an opening configured to pass the cathode shield therethrough, where the liner has a recess. A gap is defined between the U-shaped lip and the liner, wherein the U-shaped lip reduces a conductance of gas into the gap and the recess further reduces conductance of gas into the region.
Abstract:
A system for generating infrared light includes a sealed housing and a noble gas filling the housing. A window disposed in a wall of the housing is transparent to infrared radiation. Two electrodes, disposed in the housing, are aligned along a common longitudinal axis adapted to be approximately perpendicular to a local force of gravity. A gap is defined between the electrodes along the longitudinal axis. Obstruction(s), disposed in the housing adjacent to the gap between the electrodes, extend along the length of the gap. The obstruction(s) define a convection space between the electrodes. The convection space has a dimension, measured perpendicular to the longitudinal axis, in the range of 2 to 10 times the length of the gap. An electric current source is coupled to the electrodes.
Abstract:
A partially-insulated cathode for exciting plasma in a plasma chamber is provided. The partially-insulated cathode includes a conductive structure enclosing a cavity having a cavity surface and an insulating material contiguously covering a portion of the cavity surface from the cavity opening up to an insulation height that is less than a cavity height. Cross-sections of the cavity in X-Y planes have at least one respective cavity-width. A cavity opening has a diameter less than a minimum cavity-width of the at least one cavity-width.
Abstract:
A gas reactor device includes a plurality of microcavities or microchannels defined at least partially within a thick metal oxide layer consisting essentially of defect free oxide. Electrodes are arranged with respect to the microcavities or microchannels to stimulate plasma generation therein upon application of suitable voltage. One or more or all of the electrodes are encapsulated within the thick metal oxide layer. A gas inlet is configured to receive feedstock gas into the plurality of microcavities or microchannels. An outlet is configured to outlet reactor product from the plurality of microcavities or microchannels. In an example preferred device, the feedstock gas is air or O2 and is converted by the plasma into ozone (O3). In another preferred device, the feedstock gas is an unwanted gas to be decomposed into a desired form. Gas reactor devices of the invention can, for example, decompose gases such as CO2, CH4, or NOx.
Abstract:
A method for fabricating a semiconductor-based planar micro-tube discharger structure is provided, including the steps of forming on a substrate two patterned electrodes separated by a gap and at least one separating block arranged in the gap, forming an insulating layer over the patterned electrodes and the separating block, and filling the insulating layer into the gap. At least two discharge paths are formed. The method can fabricate a plurality of discharge paths in a semiconductor structure, the structure having very high reliability and reusability.
Abstract:
An improved electrode capable of smaller variances and mean breakdown voltage, increased breakdown reliability, smaller electron emission turn-on requirements, and stable electron emissions capable of high current densities include a first electrode material, an adhesion-promoting layer disposed on at least one surface of the first electrode material, and a nanostructure-containing material disposed on at least a portion of the adhesion promoting layer. An improved gas discharge device is provided incorporating an electrode formed as described above. An improved circuit incorporating an improved gas discharge tube device as set forth above is also provided. Further, an improved telecommunications network, incorporating an improved gas discharge tube device as set forth above can also be provided. An improved lighting device is also provided incorporating an electrode constructed as described above.
Abstract:
A gas flat display tube is disclosed including a glass container having a discharge gas therein; a plurality of cathodes extending horizontally and arranged by a predetermined interval in the glass container, for emitting electrons; a plurality of anodes extending vertically and arranged by a predetermined interval on one side of the glass container, for absorbing the emitted electrons; a plurality of phosphors arranged in a matrix form on the plurality of anodes and becoming luminous by the electrons absorbed into the anodes; and a plurality of gates extending vertically and arranged by a predetermined interval on the phosphors, for controlling the emitted electrons to be absorbed into the anodes.
Abstract:
The cathode for a gas discharged lamp includes gettering materials which are placed within the interior of the cathode shell. Other components may also be placed inside the cathode for continuous activation. For example, in mercury vapor lamps, a mercury amalgam is placed within the cathode. In another embodiment, a mass of electron emission assisting compound is placed within the cathode to replenish the emission assisting compound which deteriorates from the cathode.