Abstract:
A method for manufacturing a MEMS double-layer suspension microstructure comprises steps of: forming a first film body on a substrate, and a cantilever beam connected to the substrate and the first film body; forming a sacrificial layer on the first film body and the cantilever beam; patterning the sacrificial layer located on the first film body to manufacture a recessed portion used for forming a support structure, the bottom of the recessed portion being exposed of the first film body; depositing a dielectric layer on the sacrificial layer; patterning the dielectric layer to manufacture a second film body and the support structure, the support structure being connected to the first film body and the second film body; and removing the sacrificial layer to obtain the MEMS double-layer suspension microstructure.
Abstract:
A method for correcting the driving amplitude of a gyro sensor, mainly comprises adjusting the size of a driving signal (a preset amplitude value) through feedback of a sensor response amplitude signal (an average amplitude value) in a resonance maintaining time period, so that the response amplitude of the resonance maintaining time period tends to be equal, and a stable resonance amplitude is maintained. Also provided is a system for correcting the driving amplitude of a gyro sensor.
Abstract:
An insulated gate bipolar translator (IGBT) with a built-in diode and a manufacturing method thereof are provided. The IGBT comprises: a semiconductor substrate (1) of the first conduction type which has a first major surface (1S1) and a second major surface (1S2), wherein the semiconductor substrate (1) comprises an active region (100) and a terminal protection area (200) which is located at the outer side of the active region; an insulated gate transistor unit which is formed at the side of the first major surface (1S1) of the active region (100), wherein a channel of the first conduction type is formed thereon during the conduction thereof; and first semiconductor layers (10) of the first conduction type and second semiconductor layers (11) of the second conduction type of the active region, which are formed at the side of the second major surface (1S2) of the semiconductor substrate (1) alternately, wherein the IGBT only comprises the second semiconductor layers (11) in the terminal protection area (200) which is located at the side of the second major surface (1S2) of the semiconductor substrate (1).
Abstract:
A method for manufacturing an insulated gate bipolar transistor (100) comprises: providing a substrate (10), forming a field oxide layer (20) on a front surface of the substrate (10), and forming a terminal protection ring (23); performing photoetching and etching on the active region field oxide layer (20) by using an active region photomask, introducing N-type ions into the substrate (10) by using a photoresist as a mask film; depositing and forming a polysilicon gate (31) on the etched substrate (10) of the field oxide layer (20), and forming a protection layer on the polysilicon gate (31); performing junction pushing on an introduction region of the N-type ions, and then forming a carrier enhancement region (41); performing photoetching by using a P well photomask, introducing P-type ions into the carrier enhancement region (41), and performing junction pushing and then forming a P-body region; performing, by means of the polysilicon gate, self-alignment introduction of N-type ions into the P-body region, and performing junction pushing and then forming an N-type heavily doped region; forming sidewalls on two sides of the polysilicon gate, introducing P-type ions into the N-type heavily doped region, and performing junction pushing and then forming a P-type heavily doped region; and removing the protection layer, and then performing introduction and doping of the polysilicon gate. The method reduces a forward voltage drop disposing the carrier enhancement region.
Abstract:
The present disclosure relates to a semiconductor device with an ESD protection structure. The semiconductor device includes a high-voltage power device 101, the ESD protection structure is a NMOS transistor 102, a drain of the NMOS transistor is shared by a source of the power device as a common-drain-source structure 107, substrate leading-out regions of the power device 101 and the NMOS transistor are coupled to the source 106 of the NMOS transistor as a ground leading-out. In the present disclosure, the drain of the NMOS transistor is shared by the source of the power device, so the increased area of the device with the ESD protection structure incorporated is small. In addition, the holding voltage at the source of the high-voltage power device is relatively low, which helps to protect the gate oxide and improve the source reliability.
Abstract:
A method for manufacturing an IGBT, comprising: providing a substrate having a first surface and a second surface and of a first or second type of electrical conductance; forming grooves at intervals on the first surface of the substrate; filling a semiconductor material of the second or first type of electrical conductance into the grooves to form channels, where the type of electrical conductance of the channels is different from the type of electrical conductance of the substrate; bonding on the first surface of the substrate to form a drift region of the second type of electrical conductance; forming a front-side structure of the IGBT on the basis of the drift region; thinning the substrate starting from the second surface of the substrate until the channels are exposed; and forming a rear-side metal electrode on the channels and the thinned substrate. The method has no specific requirement with respect to sheet flow capacity, nor requires a double-sided exposure machine apparatus, is compatible with a conventional process, and has a simple process and high efficiency.
Abstract:
Provided is an intermetallic dielectric layer structure of a silicon-on-insulator device, comprising a silicon-rich oxide layer (54) covering a metal interconnect, a fluorine-silicon glass layer on the silicon-rich oxide layer, and a non-doped silicate glass layer on the fluorine-silicon glass layer; the thickness of the silicon-rich oxide layer (54) is 700 angstroms ±10%; the silicon-rich oxide layer having a greater thickness captures movable ions on an unsaturated bond, such that it is difficult for the movable ions to pass through the silicon-rich oxide layer, thus blocking the movable ions. The present invention has good performance in an integrity evaluation of the gate oxide layer, and avoids damage to the device caused by the aggregation of movable ions at an interface. Also provided are a silicon-on-insulator device and a method of manufacturing the intermetallic dielectric layer of the silicon-on-insulator device.
Abstract:
The present invention discloses a high voltage JFET. The high voltage JFET includes a second conductivity type drift region located on the first conductivity type epitaxial layer; a second conductivity type drain heavily doped region located in the second conductivity type drift region; a drain terminal oxygen region located on the second conductivity type drift region and at a side of the second conductivity type drain heavily doped region; a first conductivity type well region located at a side of the second conductivity type drift region; a second conductivity type source heavily doped region and a first conductivity type gate heavily doped region located on the first conductivity type well region, and a gate source terminal oxygen region; a second conductivity type channel layer located between the second conductivity type source heavily doped region and the second conductivity type drift region; a dielectric layer and a field electrode plate located on the second conductivity type channel layer. Wherein a drain electrode electrically is led out from the second conductivity type drain heavily doped region; a source electrode electrically is led out from a connection of the field electrode plate and the second conductivity type source heavily doped region; and a gate electrode electrically is led out from the first conductivity type gate heavily doped region. The transistor has a high breakdown voltage and easy to be integrated.
Abstract:
An insulated gate bipolar transistor and a manufacturing method therefor. The insulated gate bipolar transistor comprises a semiconductor substrate (1) of a first conductive type, which is provided with a first major surface (1S1) and a second major surface (1S2), wherein the semiconductor substrate (1) comprises a primitive cell area (2) and a terminal protection area (4) which is located outside the primitive cell area; a first semiconductor layer (5) of a first conductive type which is formed at the side of the first major surface of the semiconductor substrate (1), wherein the doping concentration of the first semiconductor layer (5) is higher than the doping concentration of the semiconductor substrate (1); and an insulated gate transistor unit which is formed at the side of the first major surface of the first semiconductor layer (5) in the primitive cell area, wherein the insulated gate transistor unit is conducted, a channel of a first conductive type is formed. Compared with the prior art, the present invention not only can improve the voltage resistance reliability of the insulted gate bipolar transistor, but also can reduce the forward conductive voltage drop of the insulated gate bipolar transistor.
Abstract:
A manufacturing method for reverse conducting insulated gate bipolar transistor, the manufacturing method is characterized by the use of polysilicon for filling in grooves on the back of a reverse conducting insulated gate bipolar transistor. The parameters of reverse conducting diodes on the back of the reverse conducting insulated gate bipolar transistor can be controlled simply by controlling the doping concentration of the polysilicon accurately, indicating relatively low requirements for process control. The reverse conducting insulated gate bipolar transistor manufacturing method is relatively low in requirements for process control and relatively small in manufacturing difficulty.