Abstract:
A vehicle hood covering an underhood object includes an inner surface of the vehicle hood facing the underhood object and spaced from the underhood object, and an outer surface of the vehicle hood opposite the inner surface. A local energy absorber is operatively attached to the inner surface of the vehicle hood. The local energy absorber is a multiply-connected structure. The local energy absorber includes a wall defining an interior surface having symmetry about a central plane normal to the inner surface of the vehicle hood. A plurality of apertures is defined in the wall symmetrically about the central plane to initiate buckling and fracture in the wall during an impact applied to the outer surface defining an impact event having a duration of less than 20 milliseconds.
Abstract:
A sealing assembly includes a door and a seal. The door includes a flexible body that is movable between an open position and a closed position. The seal is movable between an engaged position in which the seal is positioned in engagement with a portion of the flexible body when the flexible body is in the closed position and a disengaged position in which the seal moves away from the portion of the flexible body as the flexible body moves from the closed position to the open position such that the flexible body is spaced from the seal to minimize frictional engagement with the seal.
Abstract:
A coupling assembly includes first and second components with mating protrusions including shape memory polymer protrusions with different shape configurations. The components are assembled by engaging the protrusions with a temporary shape configuration at a first level of retention force. The protrusions are heated above the transition temperature to recover a permanent shape configuration, and cooled to provide a second level of retention force at the permanent shape configuration.
Abstract:
A vehicle structural member, such as a rocker panel, including a micro-truss core. The structural member includes specially configured and opposing outer panels that are welded together to define a channel therein, where the micro-truss core is placed in one of the panels or is fabricated to one of the panels during the micro-truss fabrication process before the panels are secured together. The micro-truss core can include separate individual sections, where each section has a tailored stiffness for that location in the member, or the micro-truss core can be a continuous core, where different sections along the length of the core are fabricated with different stiffnesses.
Abstract:
A process for reinforcing a trim panel for a vehicle using one or more micro-truss reinforcement patches. Each micro-truss reinforcement patch is secured to an inner surface of a show surface panel of the trim panel while it is in a partially cured state and then fully cured. The micro-truss patch is fusion bonded to the panel.
Abstract:
A technique for providing localized stiffening of a vehicle trim panel, especially for high curvature areas. The vehicle trim panel includes an outer panel having an outer show surface and an inner surface. A plurality of discrete reinforcement elements are bonded to the inner surface of the outer panel at locations where localized stiffening is desired. The discrete elements can come in a variety of different shapes and sizes, where the combination of elements and the number of elements is selected for a particular trim panel stiffness.
Abstract:
A vehicle hood covering an underhood object includes an inner surface of the vehicle hood facing the underhood object and spaced from the underhood object, and an outer surface of the vehicle hood opposite the inner surface. A local energy absorber is operatively attached to the inner surface of the vehicle hood. The local energy absorber is a multiply-connected structure. The local energy absorber includes a wall defining an interior surface having symmetry about a central plane normal to the inner surface of the vehicle hood. A plurality of apertures is defined in the wall symmetrically about the central plane to initiate buckling and fracture in the wall during an impact applied to the outer surface defining an impact event having a duration of less than 20 milliseconds.
Abstract:
A panel assembly including a panel having an outer show surface and an inner surface and at least one micro-truss reinforcement patch secured to the inner surface of the panel. The micro-truss patch includes a micro-truss structure having cured and interconnected.
Abstract:
A door assembly includes a structure including an exterior panel defining an opening, and a grab bar. The grab bar is moveable relative to the exterior panel. A first linkage system and a second linkage system interconnect the grab bar and the structure. A drive assembly is coupled to the first linkage system and the second linkage system to move the grab bar between an extended position and a retracted position. The drive assembly includes a Shape Memory Alloy (SMA) actuator that contracts in response to a control signal, to move the grab bar. A seal may be provided to seal between the grab bar and the structure. A heating element may provide a thermal load to heat the grab bar, a seal surrounding the grab bar, or both.
Abstract:
An actuation assembly adapted for driving a load, and protecting against overload conditions, includes an actuator defining a stroke, and an overload protection device including at least one elastic member having a nonlinear force-deflection characteristic defining a limit point and negative stiffness region, drivenly coupled to the actuator opposite the load, and operable to provide a secondary work output path when an overload condition exists.