摘要:
A die-wafer package includes a singulated semiconductor die having a first plurality of bond pads on a first surface and a second plurality of bond pads on a second opposing surface thereof. Each of the first and second pluralities of bond pads includes an under-bump metallization (UBM) layer. The singulated semiconductor die is disposed on a semiconductor die site of a semiconductor wafer and a first plurality of conductive bumps electrically couples the first plurality of bond pads of the singulated semiconductor die with a first set of bond pads formed on the semiconductor die site. A second plurality of conductive bumps is disposed on a second set of bond pads of the semiconductor die site. A third plurality of conductive bumps is disposed on the singulated semiconductor die's second plurality of bond pads. The second and third pluralities of conductive bumps are configured for electrical interconnection with an external device.
摘要:
A method for depositing a rough polysilicon film on a substrate is disclosed. The method includes introducing the reactant gases argon and silane into a deposition chamber and enabling and disabling a plasma at various times during the deposition process.
摘要:
A method for depositing tungsten nitride uses a source gas mixture having a silicon based gas for depositing the tungsten nitride to overlie a deposition substrate. A non-planar storage capacitor has a tungsten nitride capacitor electrode.
摘要:
A method for depositing tungsten nitride uses a source gas mixture having a silicon based gas for depositing the tungsten nitride to overlie a deposition substrate. A non-planar storage capacitor has a tungsten nitride capacitor electrode.
摘要:
An exemplary implementation of the present invention includes a method for forming conductive lines fabricated in a semiconductor device, the method comprising the steps of forming a first layer of patterned conductive lines, having substantially vertical sidewalls, on a supporting material; of forming insulative spacers about the substantially vertical sidewalls; of forming trenches into the supporting material that align to the insulative spacers; and of forming a second layer of patterned conductive lines such that each line is at least partially embedded within a corresponding trench. Preferably, the conductive lines, formed by a double metal process, are recessed into a supporting material that has a substantially planar surface.
摘要:
An etch process for increasing the alignment tolerances between capacitor components and an adjacent contact corridor in Dynamic Random Access Memories. The etch process is implemented in a capacitor structure formed over a semiconductor substrate The capacitor structure includes a first conductor, a dielectric layer on the first conductor and a second conductor on the dielectric layer. The second conductor has a horizontal region laterally adjacent to and extending away from the first conductor. The etch process comprises the steps of: (a) forming a layer of patterned photoresist over the second conductor, the photoresist being patterned to expose a portion of the horizontal region of the second conductor at a desired location of a contact corridor above a source/drain region in the substrate; (b) using the photoresist as an etch mask, anisotropically etching away the exposed portions of the horizontal region of the second conductor; and (c) using the photoresist again as an etch mask, isotropically etching away substantially all of the remaining portions of the horizontal region of the second conductor and thereby enlarging the area available for locating the contact corridor. Alternatively, the horizontal region of the second conductor is removed using a single isotropic etch.
摘要:
An exemplary embodiment of the present invention discloses a method for forming a forming a storage capacitor having a uniform dielectric film, by a the steps of: forming a bottom electrode of the storage capacitor and an insulation material about the bottom electrode, the bottom electrode comprises a nitridation receptive material and the insulation material comprises a nitridation resistive material; depositing a layer of non-doped silicon to a thickness of 20 Å or less over the bottom electrode and the insulation material; converting the silicon layer to a silicon nitride compound; depositing a silicon nitride of uniform thickness directly on the silicon nitride compound while using the silicon nitride compound as a nitride-nucleation enhancing surface; exposing the silicon nitride compound and the silicon nitride layer to an oxidation ambient to form a storage capacitor dielectric film; and then forming a top electrode of the storage capacitor over the storage capacitor dielectric film.