Abstract:
A method for generating plasma for removing metal oxide from a substrate is provided. The method includes providing a powered electrode assembly, which includes a powered electrode, a dielectric layer, and a wire mesh disposed between the powered electrode and the dielectric layer. The method also includes providing a grounded electrode assembly disposed opposite the powered electrode assembly to form a cavity wherein the plasma is generated. The wire mesh is shielded from the plasma by the dielectric layer when the plasma is present in the cavity, which has an outlet at one end for providing the plasma to remove the metal oxide. The method further includes introducing at least one inert gas and at least one process gas into the cavity. The method yet also includes applying an rf field to the cavity using the powered electrode to generate the plasma from the inert and the process gas.
Abstract:
Methods, systems, and computer programs are presented for semiconductor manufacturing are provided. One wafer processing apparatus includes: a top electrode; a bottom electrode; a first radio frequency (RF) power source; a second RF power source; a third RF power source; a fourth RF power source; and a switch. The first, second, and third power sources are coupled to the bottom electrode. Further, the switch is operable to be in one of a first position or a second position, where the first position causes the top electrode to be connected to ground, and the second position causes the top electrode to be connected to the fourth RF power source.
Abstract:
A method of cleaning a bevel edge of a substrate in an etch processing chamber is provided. The method includes placing a substrate on a substrate support in a processing chamber. The method also includes flowing a cleaning gas through a gas feed located near a center of a gas distribution plate, disposed at a distance from the substrate support. The method further includes generating a cleaning plasma near a bevel edge of the substrate to clean the bevel edge by powering a bottom edge electrode or a top edge electrode with a RF power source and grounding the edge electrode that is not powered by the RF power source, the bottom edge electrode surrounds the substrate support and the top edge electrode surrounds the gas distribution plate.
Abstract:
Apparatus and methods protect a central process exclusion region of a substrate during processing of an edge environ region of process performance. Removal of undesired materials is only from the edge environ region while the central device region is protected from damage. Field strengths are configured to protect the central region from charged particles from plasma in a process chamber and to foster removal of the undesired materials from only the edge environ region. A magnetic field is configured with a peak value adjacent to a border between the central and edge environ regions. A strong field gradient extends from the peak radially away from the border and away from the central region to repel the charged particles from the central region. The strength and location of the field are adjustable by axial relative movement of magnet sections, and flux plates are configured to redirect the field for desired protection.
Abstract:
The embodiments provide structures and mechanisms for removal of etch byproducts, dielectric films and metal films on and near the substrate bevel edge, and chamber interior to avoid the accumulation of polymer byproduct and deposited films and to improve process yield. In one example, a chamber for wafer bevel edge cleaning is provided. The chamber includes a bottom electrode having a bottom electrode surface for supporting the wafer when present. Also included is a top edge electrode surrounding an insulating plate. The insulator plate is opposing the bottom electrode. The top edge electrode is electrically grounded and has a down-facing L shape. Further included in the chamber is a bottom edge electrode that is electrically grounded and spaced apart from the bottom electrode. The bottom edge electrode is disposed to encircle the bottom electrode. The bottom edge electrode is oriented to oppose the down-facing L shape of the top edge electrode.
Abstract:
A method for etching features in a low-k dielectric layer disposed below an organic mask is provided by an embodiment of the invention. Features are etched into the low-k dielectric layer through the organic mask. A fluorocarbon layer is deposited on the low-k dielectric layer. The fluorocarbon layer is cured. The organic mask is stripped.
Abstract:
An arrangement for quantifying a wafer bow. The arrangement is positioned within a plasma processing system is provided. The arrangement includes a support mechanism for holding a wafer. The arrangement also includes a first set of sensors, which is configured to collect a first set of measurement data for a plurality of data points on the wafer. The first set of measurement data indicates a minimum gap between the first set of sensors and the wafer. The first set of sensors is positioned in a first location, which is outside of a set of process modules of the plasma processing system.
Abstract:
A method for aligning a substrate to a process center of a support mechanism is provided. The method includes determining substrate thickness after substrate processing at a plurality of orientations and at a plurality of radial distances from a geometric center of the substrate. The method also includes deriving a set of process rate values from substrate thickness and process duration. The method further includes creating for a process rate an off-centered plot, which represents a substantially concentric circle whose points are a circumference of the off-centered plot having substantially the first process rate. The method yet also includes applying a curve-fitting equation to the off-centered plot to determine a set of parameters. The method yet further includes teaching a set of robot arms the set of parameters, thereby enabling the set of robot arms to align another substrate that is supported by the support mechanism with the process center.
Abstract:
Methods for orienting an upper electrode relative to a lower electrode are provided. The lower electrode is configured to have a desired existing orientation in a process chamber to define active and inactive process zones in the process chamber for processing a wafer. The method includes configuring each electrode with a reference surface, where a lower electrode reference surface is in the desired existing orientation and an upper electrode reference surface to be oriented parallel to the lower electrode reference surface. Then, temporarily holding the upper electrode reference surface oriented parallel to the lower electrode reference surface, and securing the upper electrode to a drive to mount the upper electrode reference surface parallel to the lower electrode reference surface. Other method configurations are also disclosed and illustrated.
Abstract:
An apparatus generating a plasma for removing fluorinated polymer from a substrate is provided. The apparatus includes a powered electrode assembly, which includes a powered electrode, a first dielectric layer, and a first wire mesh disposed between the powered electrode and the first dielectric layer. The apparatus also includes a grounded electrode assembly disposed opposite the powered electrode assembly so as to form a cavity wherein the plasma is generated. The first wire mesh is shielded from the plasma by the first dielectric layer when the plasma is present in the cavity, which has an outlet at one end for providing the plasma to remove the fluorinated polymer.