Abstract:
The invention provides methods and devices for detecting, enumerating or identifying target nucleic acid molecules using immobilized capture probes and single molecule sequencing techniques.
Abstract:
Microfluidic devices are described that include a rigid base layer, and an elastomeric layer on the base layer. The elastomeric layer may include at least part of a fluid channel for transporting a liquid reagent, and a vent channel that accepts gas diffusing through the elastomeric layer from the flow channel and vents it out of the elastomeric layer. The devices may also include a mixing chamber fluidly connected to the fluid channel, and a control channel overlapping with a deflectable membrane that defines a portion of the flow channel, where the control channel may be operable to change a rate at which the liquid reagent flows through the fluid channel. The devices may further include a rigid plastic layer on the elastomeric layer.
Abstract:
A method of processing data associated with fluorescent emissions from a microfluidic device. The method includes performing an auto-focus process associated with a first image of the microfluidic device and performing an auto-exposure process associated with the first image of the microfluidic device. The method also includes capturing a plurality of images of the microfluidic device. The plurality of images are associated with a plurality of thermal cycles. The method further includes performing image analysis of the plurality of captured images to determine a series of optical intensities and performing data analysis of the series of optical intensities to provide a series of change in threshold values.
Abstract:
The presence of a detectable entity within a detection volume of a microfabricated elastomeric structure is sensed through a change in the electrical or magnetic environment of the detection volume. In embodiments utilizing electronic detection, an electric field is applied to the detection volume and a change in impedance, current, or combined impedance and current due to the presence of the detectable entity is measured. In embodiments utilizing magnetic detection, the magnetic properties of a magnetized detected entity alter the magnetic field of the detection volume. This changed magnetic field induces a current which can reveal the detectable entity. The change in resistance of a magnetoresistive element may also reveal the passage of a magnetized detectable entity.
Abstract:
A biological substrate, e.g., microfluidic chip. The substrate includes a rigid substrate material, which has a surface region capable of acting as a handle substrate. The substrate also has a deformable fluid layer coupled to the surface region. One or more well regions are formed in a first portion of the deformable fluid layer and are capable of holding a fluid therein. The one or more channel regions are formed in a second portion of the deformable fluid layer and are coupled to one or more of the well regions. An active region is formed in the deformable fluid layer. At least three fiducial markings are formed within the non-active region and disposed in a spatial manner associated with at least one of the well regions. A control layer is coupled to the fluid layer.
Abstract:
An injection molding method of fabricating a carrier for holding a microfluidic device can form all of the desired features of such a carrier, including wells, channels and ports having smaller dimensions and greater density than previously achieved, while reducing or avoiding fracturing and the need for drilling the substrate to form certain features, in particular the ports. The carrier includes a substrate with a plurality of wells, each well defining a volume of between 0.1 μl and 100 μl; a plurality of channels within the substrate wherein each well is in fluid communication with at least one of the plurality of channels; a plurality of ports within the carrier substrate wherein each port is for coupling with regions in the carrier substrate adapted to receive fluids or pressure; and a receiving portion for receiving a microfluidic device and placing the microfluidic device in fluid communication with the plurality of wells. The carrier has a polymeric composition and/or an array of structural features achieved via the injection molding fabrication technique that enhance its performance and compatibility with existing instrumentation.
Abstract:
Embodiments of the present invention provide improved microfluidic devices and related apparatus, systems, and methods. Methods are provided for reducing mixing times during use of microfluidic devices. Microfluidic devices and related methods of manufacturing are provided with increased manufacturing yield rates. Improved apparatus and related systems are provided for supplying controlled pressure to microfluidic devices. Methods and related microfluidic devices are provided for reducing dehydration of microfluidic devices during use. Microfluidic devices and related methods are provided with improved sample to reagent mixture ratio control. Microfluidic devices and systems are provided with improved resistance to compression fixture pressure induced failures. Methods and systems for conducting temperature controlled reactions using microfluidic devices are provided that reduce condensation levels within the microfluidic device. Methods and systems are provided for improved fluorescent imaging of microfluidic devices.
Abstract:
An apparatus for imaging one or more selected fluorescence indications from a microfluidic device. The apparatus includes an imaging path coupled to least one chamber in at least one microfluidic device. The imaging path provides for transmission of one or more fluorescent emission signals derived from one or more samples in the at least one chamber of the at least one microfluidic device. The chamber has a chamber size, the chamber size being characterized by an actual spatial dimension normal to the imaging path. The apparatus also includes an optical lens system coupled to the imaging path. The optical lens system is adapted to transmit the one or more fluorescent signals associated with the chamber.
Abstract:
Methods, systems, and devices are described for multiple single-cell capturing and processing utilizing microfluidics. Tools and techniques are provided for capturing, partitioning, and/or manipulating individual cells from a larger population of cells along with generating genetic information and/or reactions related to each individual cell. Different capture configurations may be utilized to capture individual cells and then processing each individual cell in a multi-chamber reaction configuration. Some embodiments may provide for specific target amplification, whole genome amplification, whole transcriptome amplification, real-time PCR preparation, copy number variation, preamplification, mRNA sequencing, and/or haplotyping of the multiple individual cells that have been partitioned from the larger population of cells. Some embodiments may provide for other applications. Some embodiments may be configured for imaging the individual cells or associated reaction products as part of the processing. Reaction products may be harvested and/or further analyzed in some cases.
Abstract:
Systems and associated methods and techniques for illuminating and imaging a device, such as a microfluidic or microarray device, are described herein. An optical source that illuminates the planar surface at an oblique angle can be used with optical components, such as an offset optical shaping rod and a wedge prism, used to provide uniform illumination across the planar surface and allow the illumination to appropriately reach the target illumination area despite the geometric limitations imposed by the presence and position of imaging, microfluidic control, and/or thermal cycling components.