Abstract:
An organic semiconductor device includes an organic semiconductor, an electrode electrically connected to the organic semiconductor, and a self-assembled monolayer positioned between the organic semiconductor and the electrode, the self-assembled monolayer including a monomer having an anchor group at one end and an ionic functional group at another end.
Abstract:
A method of preparing a thin film includes coating a thin film-forming composition on a substrate, and heat-treating the coated thin film-forming composition under a pressure less than 760 Torr. The thin film includes a compact layer having a thickness in a range of greater than 50 Å to about 20,000 Å and a refractive index in a range of about 1.85 to about 2.0.
Abstract:
An example embodiment relates to a transistor including a channel layer. A channel layer of the transistor may include a plurality of unit layers spaced apart from each other in a vertical direction. Each of the unit layers may include a plurality of unit channels spaced apart from each other in a horizontal direction. The unit channels in each unit layer may form a stripe pattern. Each of the unit channels may include a plurality of nanostructures. Each nanostructure may have a nanotube or nanowire structure, for example a carbon nanotube (CNT).
Abstract:
A method of manufacturing an organic semiconductor thin film includes coating an organic semiconductor solution on a substrate, and shearing the organic semiconductor solution in a direction that results in a shearing stress being applied to the organic semiconductor solution to form the organic semiconductor thin film, wherein a speed of the shearing is controlled such that an intermolecular distance of the organic semiconductor solution is adjusted.
Abstract:
Provided may be a Poly-Si thin film transistor (TFT) and a method of manufacturing the same. The Poly-Si TFT may include a first Poly-Si layer on an active layer formed of Poly-Si and doped with a low concentration; and a second Poly-Si layer on the first Poly-Si layer and doped with the same concentration as the first Poly-Si layer or with a higher concentration than the first Poly-Si layer, wherein lightly doped drain (LDD) regions capable of reducing leakage current may be formed in inner end portions of the first Poly-Si layer.
Abstract:
An apparatus for storing energy may include: a plurality of nanowire cells electrically connected to each other; and a storage for storing electrical energy generated from the nanowire cells. Each of the plurality of nanowire cells may include: first and second electrodes disposed at an interval; and a nanowire, which is disposed between the first and the second electrodes and made of a piezoelectric material. The plurality of nanowire cells may be electrically connected, so that voltage or current may be increased. Therefore, wireless recharging of the storage connected to the nanowire cells with electrical energy may be enabled.
Abstract:
Oxide thin film, electronic devices including the oxide thin film and methods of manufacturing the oxide thin film, the methods including (A) applying an oxide precursor solution comprising at least one of zinc (Zn), indium (In) and tin (Sn) on a substrate, (B) heat-treating the oxide precursor solution to form an oxide layer, and (C) repeating the steps (A) and (B) to form a plurality of the oxide layers.
Abstract:
A thin film transistor (TFT) and a method of manufacturing the same are provided, the TFT including a gate insulating layer on a gate. A channel may be formed on a portion of the gate insulating layer corresponding to the gate. A metal material may be formed on a surface of the channel. The metal material crystallizes the channel. A source and a drain may contact side surfaces of the channel.
Abstract:
Disclosed herein are a method for fabricating an organic thin film transistor, including treating the surfaces of a gate insulating layer and source/drain electrodes with a self-assembled monolayer (SAM)-forming compound through a one-pot reaction, and an organic thin film transistor fabricated by the method. According to example embodiments, the surface-treatment of the gate insulating layer and the source/drain electrodes may be performed in a single vessel through a single process.
Abstract:
A composition for producing an organic insulator is provided which comprises an organic-inorganic hybrid material (as defined). The hybrid material shows high solubility in organic solvents and monomers, and superior adhesion to substrates. In addition, the hybrid material displays a high dielectric constant and a high degree of crosslinking. Based on these advantages, the composition comprising the organic-inorganic hybrid material can be utilized during the fabrication of various electronic devices by a wet process. A method for producing the organic insulator while utilizing the composition also is provided, as well as the resulting organic insulator, and an organic thin film transistor which incorporates the resulting insulating layer.