Abstract:
The present invention relates to an in situ preparation of a redox initiated bimorphological aqueous dispersion of first polymer particles with protuberating phosphorus acid cores and second polymer particles without protuberating cores. The method provides a more efficient way of making compositions for pigmented coating formulations.
Abstract:
The present invention is a composition comprising a) an aqueous dispersion of TiO2 particles encapsulated with an encapsulating acrylic or styrene-acrylic polymer comprising from structural units of diacetone acrylamide; and b) adipic acid dihydrazide. The composition is useful in coatings applications and shows a surprising improvement in gloss over compositions that do not include diacetone acrylamide functionalized encapsulating polymer and adipic acid dihydrazide.
Abstract:
The present invention provides aqueous compositions for use in coating wood joinery, especially for exterior use, comprising (a) one or more dihydrazide compounds in a total amount of from 0.5 to 4 wt. %, based on the total weight of composition solids and (b) of one or more aqueous multistage emulsion copolymers containing, as (i) a first stage, an emulsion copolymer having a glass transition temperature (Tg) via differential scanning calorimetry (DSC) of from −50 to 30° C., and containing, in copolymerized form one or more monoethylenically unsaturated phosphorous acid monomers and, one or more keto group containing amide monomers, and, as (ii) a second stage, an emulsion copolymer having a DSC Tg of at least 50° C. to 125° C., wherein the weight ratio of (i) the first stage to (ii) the second stage, based on copolymer solids, ranging from 50:50 to 90:10.
Abstract:
The present invention provides polymer modified aqueous urea formaldehyde resin (UF resin) binder compositions useful in making a treated glass mat, e.g., for roofing shingles, wherein the polymer modifier is an multistage aqueous emulsion acorn copolymer comprising one protuberant polymer stage containing phosphorous acid groups and one or more other polymer stage comprising an addition copolymer incompatible with the protuberant polymer stage, wherein the multistage aqueous emulsion copolymer has a measured Tg of from −60 to 25° C., or, preferably from 31 30 to 12° C. and, further wherein the weight ratio of the total of monomers used to make the one or more other polymer stage to the total amount of monomers used to make the protuberant polymer stage ranges from 3:1 to 50:1, or, preferably, from 3:1 to 30:1 or, more preferably, from 3:1 to 20:1, or, even more preferably, from 8:1 to 12:1.
Abstract:
The present invention relates to a process for preparing an aqueous dispersion of a vinyl acetate polymer comprising the step of polymerizing vinyl acetate under emulsion polymerization conditions in the presence of a chain transfer agent which is a hypophosphite salt or X—R1—SH, where R1 is a C1-C4 alkyl group and X is sulfonate, hydroxyl, sulfate, phosphate, phosphonate, carboxylic acid or a salt thereof, or C1-C3-alkyl carboxylate. The process provides a way of lowering the viscosity of the vinyl acetate polymer at a given solids content.
Abstract:
The present invention relates to a process for preparing an aqueous dispersion of polymer encapsulated TiO2 particles, comprising a multistage polymerization steps that includes a relatively large amount of low Tg first monomers and a relatively small amount of high Tg second monomers that comprise a relatively high concentration of an acid monomer. The dispersion of encapsulated TiO2 particles shows significantly improved freeze-thaw stability as compared with prior art processes that do not include staging with the second monomers described herein.
Abstract:
The present invention relates to a process for preparing an aqueous dispersion of a vinyl acetate polymer comprising the step of polymerizing vinyl acetate under emulsion polymerization conditions in the presence of a chain transfer agent which is a hypophosphite salt or X—R1—SH, where R1 is a C1-C4 alkyl group and X is sulfonate, hydroxyl, sulfate, phosphate, phosphonate, carboxylic acid or a salt thereof, or C1-C3-alkyl carboxylate. The process provides a way of lowering the viscosity of the vinyl acetate polymer at a given solids content.
Abstract:
The present invention relates to a process comprising contacting methyl methacrylate or styrene; a C1-C10-alkyl acrylate; and a polymerizable carboxylic acid monomer with a stable aqueous dispersion of first polymer particles, under emulsion polymerization conditions, to form a stable aqueous dispersion of second polymer particles. The first polymer particles have a Tg in the range of from −30° C. to 30° C., and the monomers have a calculated Tg in the range of 50° C. to 120° C. The present invention also relates to the dispersion of second polymer particles, which is useful as a binder to improve freeze-thaw stability in a coatings formulation.
Abstract:
The present invention is a composition comprising a) a stable aqueous dispersion of polymer particles functionalized with structural units of itaconic acid or a salt thereof and; b) a water-soluble polymer functionalized with structural units of a sulfonic acid monomer or a salt thereof as well as a method comprising mixing the stable aqueous dispersion of the itaconic acid functionalized polymer particles with the sulfonic acid functionalized polymer, and TiO2. The composition of the present invention is useful a coatings formulation that provides surprisingly good hiding.
Abstract:
The present invention is a process for preparing a multistage polymer by contacting under emulsion polymerization conditions an acrylic monomer, a sulfur acid monomer, and a phosphorous acid monomer as described herein. The present invention is also a composition comprising a nonionic surfactant and a stable aqueous dispersion of polymer particles comprising structural units of butyl acrylate, methyl methacrylate, a sodium vinylbenzenesulfonate, and phosphoethyl methacrylate; wherein the polymer particles have a Tg of less than 10° C. The composition of the present invention is useful as a binder for coatings compositions.