摘要:
Herein disclosed is an optical modulation device, comprising: a substrate 1 having a polarization non-reversal region 17a and a polarization reversal region 17b; an optical waveguide 18 including first and second branched optical waveguide portions 18a, 18b; and a traveling waveguide including a center electrode 19a and a ground electrode 19b, 19c to have an electric signal applied thereto, said traveling waveguide and said first and second branched optical waveguide portions collectively forming an interaction portion to have said incident light interacted with said electric signal, said interaction portion being constituted by a first interaction sub-portion 20a and a second interaction sub-portion 20b, said first and second interaction sub-portions being respectively positioned in regions of said substrate having opposite polarization orientations with each other, in which said center electrode is positioned in face to face relationship with one of said first and second branched optical waveguide portions at said first and second interaction sub-portion to ensure that said incident light in said first and second branched optical waveguide portions are phase modulated, and in which said interaction portion includes an optical waveguide shift sub-portion sandwiched between said first and second interaction sub-portions to have positions of said first and second branched optical waveguide portions shifted therein in a transverse direction, ensuring that positions of said first and second optical waveguides relative to said center and ground electrodes are interchanged between said first and second interaction sub-portions.
摘要:
Herein disclosed is an optical modulator, comprising: a substrate (1) having an electro-optic effect; an optical waveguide (3) formed in the substrate; a traveling wave electrode (4) including a center electrode (4a) and ground electrodes (4b, 4c) to have a high frequency electric signal applied thereto, the traveling wave electrode and the optical waveguide collectively forming a high frequency interaction portion (20) to have the incident light phase modulated under the condition that the high frequency electric signal is applied to the traveling wave electrode; and bias electrodes each including a center electrode (22a, 23a) and ground electrodes (22b, 22c, 23b, 23c) to have a bias voltage applied thereto, each of the bias electrodes and the optical waveguide collectively forming a bias voltage interaction portion (19, 21) to have the incident light phase modulated under the condition that the bias voltage is applied to the bias electrode, in which the traveling wave electrode and the bias electrodes are extended in a propagation direction of the incident light with the traveling wave electrode (20) positioned between the bias electrodes (19, 21).
摘要:
Disclosed is a multilayer organic solar cell having a structure wherein an inter-layer (3) is arranged between a first photoactive layer (1) and a second photoactive layer (2). This structure is obtained by forming the inter-layer (3) on the first photoactive layer (1) which is formed from an organic compound solution containing a donor material and an acceptor material, and then applying an organic compound solution containing a donor material and an acceptor material over the inter-layer (3) for forming the second photoactive layer (2). The inter-layer (3) is composed of at least either of a transparent oxide and a transparent nitride. By having such a structure, the inter-layer (3) prevents the solvent in the solution for the second photoactive layer (2) from permeating into the first photoactive layer (1) when the second photoactive layer (2) is formed over the first photoactive layer (1) by applying the solution. Consequently, the first photoactive layer (1) is prevented from destruction or deterioration in functions.
摘要:
There is provided a composite thin film-holding substrate in which a composite thin film (4) comprising a filler (2) having a refractive index lower than that of a substrate (1) and a binder (3) having a refractive index higher than that of the filler (2) is formed on a surface of the substrate (1). Light is efficiently scattered when passing through the composite thin film (3) which comprises the filler (2) and the binder (3) having different refractive indexes from each other. In addition, the refractive index of a composite thin film (4) comprising a filler (2) having a low refractive index is low. As a result, the discharge efficiency of light which passes through the composite thin film (4) from the substrate (1) to the external is improved.
摘要:
A pattern forming method is disclosed, which comprises forming a photo resist film on a substrate, irradiating the photo resist film with an energy ray to form a desired latent image pattern, placing the substrate on a spacer provided on a hot plate, heating the photo resist film by using the hot plate, and developing the photo resist film to form a photo resist pattern, wherein an amount of irradiation of the energy ray is set such that the amount of irradiation of the energy ray in an exposure region in which a distance between a back surface of the substrate and an upper surface of the hot plate is long is larger than the amount of irradiation of the energy ray in an exposure region in which a distance between the back surface of the substrate and the upper surface of the hot plate is short.
摘要:
A method of manufacturing a semiconductor includes performing exposure using a first photomask having a pattern line in which hole patterns and assist patterns not transferred onto the semiconductor substrate are arrayed at an equal pitch on the mask, the pitch being converted a first pitch Phole on the substrate when the mask patterns are transferred on the substrate, and performing exposure using a second photomask having a pattern line in which wiring patterns are arrayed at an equal pitch on the mask, the pitch being converted a second pitch Pline on the substrate when the mask patterns are transferred on the substrate, wherein m×Pline=n×Phole and m,n(m>n) are integers.
摘要:
Herein disclosed is an optical modulator, comprising: a substrate (1) having an electro-optic effect; an optical waveguide (3) formed in the substrate; a traveling wave electrode (4) including a center electrode (4a) and ground electrodes (4b, 4c) to have a high frequency electric signal applied thereto, the traveling wave electrode and the optical waveguide collectively forming a high frequency interaction portion (20) to have the incident light phase modulated under the condition that the high frequency electric signal is applied to the traveling wave electrode; and bias electrodes each including a center electrode (22a, 23a) and ground electrodes (22b, 22c, 23b, 23c) to have a bias voltage applied thereto, each of the bias electrodes and the optical waveguide collectively forming a bias voltage interaction portion (19, 21) to have the incident light phase modulated under the condition that the bias voltage is applied to the bias electrode, in which the traveling wave electrode and the bias electrodes are extended in a propagation direction of the incident light with the traveling wave electrode (20) positioned between the bias electrodes (19, 21).
摘要:
Herein disclosed is an optical modulator, comprising: a substrate 1 having an electro-optic effect; an optical waveguide 12 embedded in the substrate 1 to have a light wave guided therein; a traveling wave electrode 4 mounted on the substrate 1 to have a traveling wave applied thereon so that the light wave is modulated by the traveling wave with the electro-optic effect, the traveling wave electrode being constituted by a center electrode 4a and ground electrodes 4b, 4c; in which the optical waveguide has a plurality of interaction optical waveguides 12a, 12b to collectively form a Mach-Zehnder optical waveguide operative to modulate the light wave in a phase modulation manner under the condition that the traveling wave is applied to the traveling wave electrode, the interaction optical waveguides 12a, 12b collectively form a region where respective widths of said interaction optical waveguides are different from each other, and the center electrode 4a and the ground electrodes 4b, 4c are positioned such that interaction efficiencies between the high frequency electric signal and the light wave guided in the respective interaction optical waveguides 12a, 12b are substantially equal to each other.
摘要:
A method of processing a substrate, comprising forming a chemically amplified resist film on a substrate, irradiating energy beams to the chemically amplified resist film to form a latent image therein, carrying out heat treatment with respect to the chemically amplified resist film, heating treatment being carried out in a manner of relatively moving a heating section for heating the chemically amplified resist film and the substrate forming a gas stream flowing reverse to the relatively moving direction of the heating section between the lower surface of the heating section and the chemically amplified resist film.
摘要:
A waveguide type optical device has an optical waveguide formed on a substrate, functional optical waveguide an optical input end face and an optical output end face which are provided to respective substrate end faces an input optical waveguide connecting the optical input end face and the functional optical waveguides, an output optical waveguide connecting the optical output end face and the functional optical waveguides, and a signal light monomode optical fiber. The input optical waveguide and the output optical waveguide is formed so as to form angles other than 0° with the functional optical waveguides at the optical input end face and the optical output end face respectively, such that an angle between each of the input optical waveguide and the output optical waveguide with respect to a corresponding one of the substrate end faces is other than 90°.