Abstract:
A semiconductor device having a metal gate includes a substrate having a first gate trench and a second gate trench formed thereon, a gate dielectric layer respectively formed in the first gate trench and the second gate trench, a first work function metal layer formed on the gate dielectric layer in the first gate trench and the second gate trench, a second work function metal layer respectively formed in the first gate trench and the second gate trench, and a filling metal layer formed on the second work function metal layer. An opening width of the second gate trench is larger than an opening width of the first gate trench. An upper area of the second work function metal layer in the first gate trench is wider than a lower area of the second work function metal layer in the first gate trench.
Abstract:
A method for fabricating fin-shaped field-effect transistor (FinFET) is disclosed. The method includes the steps of: providing a substrate; forming a fin-shaped structure in the substrate; forming a shallow trench isolation (STI) on the substrate and around the bottom portion of the fin-shaped structure; forming a first gate structure on the STI and the fin-shaped structure; and removing a portion of the STI for exposing the sidewalls of the STI underneath the first gate structure.
Abstract:
A method for manufacturing semiconductor structures includes providing a substrate having a plurality of mandrel patterns and a plurality of dummy patterns, simultaneously forming a plurality of first spacers on sidewalls of the mandrel patterns and a plurality of second spacers on sidewalls of the dummy patterns, and removing the second spacers and the mandrel patterns to form a plurality of spacer patterns on the substrate.
Abstract:
A method of forming a metal silicide layer includes the following steps. At first, at least a gate structure, at least a source/drain region and a first dielectric layer are formed on a substrate, and the gate structure is aligned with the first dielectric layer. Subsequently, a cap layer covering the gate structure is formed, and the cap layer does not overlap the first dielectric layer and the source/drain region. Afterwards, the first dielectric layer is removed to expose the source/drain region, and a metal silicide layer totally covering the source/drain region is formed.
Abstract:
The present invention provides a method for forming a fin structure comprising the following steps: first, a multiple-layer structure is formed on a substrate; then, a sacrificial pattern is formed on the multiple-layer structure, a spacer is formed on the sidewall of the sacrificial pattern and disposed on the multiple-layer structure, the sacrificial pattern is removed, the spacer is used as a cap layer to etch parts of the multiple-layer structure, and then the multiple-layer structure is used as a cap layer to etch the substrate and to form at least one fin structure in the substrate.
Abstract:
A manufacturing method of semiconductor devices having metal gate includes following steps. A substrate having a first semiconductor device and a second semiconductor device formed thereon is provided. The first semiconductor device includes a first gate trench and the second semiconductor device includes a second gate trench. A first work function metal layer is formed in the first gate trench and the second gate trench. A portion of the first work function metal layer is removed from the second gate trench. A second work function metal layer is formed in the first gate trench and the second gate trench. The second work function metal layer and the first work function metal layer include the same metal material. A third work function metal layer and a gap-filling metal layer are sequentially formed in the first gate trench and the second gate trench.
Abstract:
A complementary metal oxide semiconductor field-effect transistor (MOSFET) includes a substrate, a first MOSFET and a second MOSFET. The first MOSFET is disposed on the substrate within a first transistor region and the second MOSFET is disposed on the substrate within a second transistor region. The first MOSFET includes a first fin structure, two first lightly-doped regions, two first doped regions and a first gate structure. The first fin structure includes a first body portion and two first epitaxial portions, wherein each of the first epitaxial portions is disposed on each side of the first body portion. A first vertical interface is between the first body portion and each of the first epitaxial portions so that the first-lightly doped region is able to be uniformly distributed on an entire surface of each first vertical interface.
Abstract:
A semiconductor structure includes a substrate, a first dielectric layer on the substrate, a plurality of memory stack structures on the first dielectric layer, an insulating layer conformally covering the memory stack structures and the first dielectric layer, a second dielectric layer on the insulating layer and filling the spaces between the memory stack structures, a first interconnecting structure through the second dielectric layer, wherein a top surface of the first interconnecting structure is flush with a top surface of the second dielectric layer and higher than top surfaces of the memory stack structures, a third dielectric layer on the second dielectric layer, and a plurality of second interconnecting structures through the third dielectric layer, the second dielectric layer and the insulating layer on the top surfaces of the memory stack structures to contact the top surfaces of the memory stack structures.
Abstract:
A method of fabricating magnetoresistive random access memory, including providing a substrate, forming a bottom electrode layer, a magnetic tunnel junction stack, a top electrode layer and a hard mask layer sequentially on the substrate, wherein a material of the top electrode layer is titanium nitride, a material of the hard mask layer is tantalum or tantalum nitride, and a percentage of nitrogen in the titanium nitride gradually decreases from a top surface of top electrode layer to a bottom surface of top electrode layer, and patterning the bottom electrode layer, the magnetic tunnel junction stack, the top electrode layer and the hard mask layer into multiple magnetoresistive random access memory cells.
Abstract:
A magnetoresistive random access memory (MRAM), including a bottom electrode layer on a substrate, a magnetic tunnel junction stack on the bottom electrode layer, a top electrode layer on the magnetic tunnel junction stack, and a hard mask layer on said top electrode layer, wherein the material of top electrode layer is titanium nitride, a material of said hard mask layer is tantalum or tantalum nitride, and the percentage of nitrogen in the titanium nitride gradually decreases from the top surface of top electrode layer to the bottom surface of top electrode layer.