摘要:
The present invention relates to a droplet-based nucleic acid amplification method and apparatus. According to one embodiment, a method of amplifying a nucleic acid in a biological sample is provided, wherein the method includes: (a) providing a system comprising a droplet microactuator electronically coupled to and controlled by a processor capable of executing instructions, the droplet microactuator comprising: (i) a sample potentially comprising a target nucleic acid; (ii) a substrate comprising electrodes for conducting droplet operations; and (iii) one or more temperature control means arranged in proximity with one or more of the electrodes for heating a region of the droplet microactuator such that a droplet can be transported into the region for heating; (b) using droplet operations to combine on the droplet microactuator one or more amplification reagent droplets and one or more sample droplets to yield an amplification-ready droplet; and (c) thermal cycling the amplification-ready droplet sufficient to result in amplification of a target nucleic acid when present in the amplification-ready droplet.
摘要:
The present invention is directed to modified droplet actuators, fluids and methods for enhancing and/or maintaining oil film stability in a droplet actuator. In an exemplary embodiment, the invention provides a droplet actuator with one or more substrates arranged to form a droplet operations gap comprising gap-facing surfaces; droplet operations electrodes configured to conduct droplet operations in the droplet operations gap; at least one barrier included on at least one of the substrate surfaces and having dimensions selected to: permit droplet transport from atop a first droplet operations electrode to a second droplet operations electrode when the second droplet operations electrode is activated; and prevent movement of a droplet from atop a first droplet operations electrode when the first and second droplet operations electrodes are inactive.
摘要:
A method of conducting a droplet-based enzymatic assay is provided. The method generally makes use of a droplet actuator. A droplet comprising an enzyme of interest is provided on the droplet actuator along with a droplet comprising a substrate which is potentially modified in the presence of the enzyme. The method involves executing droplet operations on the droplet actuator to combine the droplets, thereby yielding an assay droplet, and detecting modification of the substrate by the enzyme in the assay droplet on the droplet actuator. The enzyme of interest may, for example, be a potentially mutated or improperly folded enzyme exhibiting altered enzyme activity as compared to a corresponding normal enzyme.
摘要:
A method is provided for conducting a droplet-based enzymatic assay, e.g., for diagnostic purposes. On a droplet actuator, a droplet comprising an enzyme of interest is provided along with a droplet comprising a substrate which is potentially modified in the presence of the enzyme. Droplet operations are executed to combine the enzyme and substrate droplets on the droplet actuator, thereby yielding an assay droplet on the droplet actuator. Detecting modification of the substrate by the enzyme in the assay droplet occurs on the droplet actuator. Modified substrate preparations for conducting such enzymatic assays are also provided.
摘要:
The present invention is directed to droplet actuators with droplet retention structures, and methods related thereto. In an exemplary embodiment, the invention provides a droplet actuator with one or more substrates arranged to form a droplet operations gap comprising gap-facing surfaces; droplet operations electrodes configured to conduct droplet operations in the droplet operations gap; at least one barrier included on at least one of the substrate surfaces and having dimensions selected to: permit droplet transport from atop a first droplet operations electrode to a second droplet operations electrode when the second droplet operations electrode is activated; and prevent movement of a droplet from atop a first droplet operations electrode when the first and second droplet operations electrodes are inactive.
摘要:
The present invention relates to providing improved hydrogen peroxide assays, as well as droplet actuators for conducting such assays. The droplet actuators of the invention may be used to conduct droplet-based hydrogen peroxide assays. They may also be associated with detectors for analyzing the results of the hydrogen peroxide assays of the invention. They may be provided as components of systems which control droplet operations and/or detection for conducting the hydrogen peroxide assays. Measurement by the detector may be used to quantify the presence of an analyte in a sample.
摘要:
The invention relates to a microfluidic platform and methods of using the platform for conducting enzyme assays using a droplet actuator. The enzyme assays of the invention are useful for, among other things, identifying and/or characterizing disorders resulting from conditions in which enzymes are defective or are produced in inappropriate amounts. Enzyme assays of the invention may, for example, be used to detect altered activity of a particular enzyme in a sample, which may serve as an indicator of a particular disease. Altered activity may, for example, be caused by conditions which result in the increased or reduced production of a certain enzyme or its substrate and/or conditions which result in defective enzymes and/or substrates exhibiting increased or decreased effectiveness relative to corresponding normal enzymes and/or substrates.
摘要:
The invention provides techniques for coagulating blood on a droplet actuator. The invention also provides methods of manipulating the coagulated blood including a variety of droplet operations that may be conducted using the coagulated blood. Further, the invention provides a variety of assays that make use of the coagulated blood or various blood samples as input.
摘要:
A method of sorting beads on a droplet actuator. The method may, for example, include the following steps: (a) providing a droplet actuator comprising a substrate comprising electrodes arranged for conducting droplet operations on a substrate surface; (b) providing an assay droplet on the substrate surface, the droplet comprising two or more target-capture bead populations comprising target-capture beads comprising: (i) a capture probe bound to a target substance; and (ii) a unique bar binding element which binds to a corresponding binder; (c) using droplet operations to combine the assay droplet with a bead-capture droplet comprising one or more bead-capture beads having affinity for the binding element; (d) immobilizing the one or more bead-capture beads while conducting droplet operations to separate the bead-capture beads from unbound target-capture beads; (e) resuspending the one or more bead-capture beads in a droplet, thereby providing a droplet comprising a substantially pure substance-capture bead population; and (f) using droplet operations to conduct one or more protocol steps for an assay protocol.
摘要:
The invention is directed to droplet actuator devices and assay methods. The method may include, among other things, a method of conducting enzymatic assays using umbelliferone substrates with cyclodextrins in droplets in oil, the method including incubating a droplet in oil, the droplet preferably comprising an umbelliferone substrate, a sample, and a cyclodextrin compound. The methods may further include a method of substantially eliminating cross-contamination between droplets in enzymatic containing substrate-based bioassays. The method may include immobilization of the enzymatic substrate including forming an inclusion complex with the substrate for stabilizing the substrate within an aqueous environment, wherein the inclusion complex may be formed using cyclodextrins. In yet another embodiment, the invention may provide a method of enhancing hydrolysis of enzymatic substrates. The methods may further include a method of forming an inclusion complex with the substrate for stabilizing the substrate within an aqueous environment, wherein the substrate may be a 4-MU- or HMU containing substrate. The inclusion complex may be formed using cyclodextrin.