Abstract:
Structured zeolite coated structures comprising thick porous inorganic zeolite coatings disposed on monolithic support structures, which can be honeycomb shaped, are disclosed. The zeolite coatings have open interconnected pores of controlled pore size and are characterized by improved durability, physical integrity, and adherence sufficient to enable use as supports for catalysts in liquid phase applications under harsh reaction conditions. Methods for making zeolite coated structures are also disclosed.
Abstract:
The present invention relates to a structured catalyst for reforming of gasoline and a method of preparing the same, more particularly to a structured catalyst for reforming of gasoline for fuel-cell powered vehicles prepared by wash-coating the transition metal based reforming catalyst on the surface of the ceramic honeycomb support wash-coated with sub-micron sized alumina or its precursor to sufficiently increase the effective surface area and the performance of the catalyst and a method of preparing the same.
Abstract:
The present invention relates to a gas processing agent for removing carbon monoxide, hydrogen, carbon dioxide and water vapor in a gas at the same time, which can maintain a high oxidation activity and have a long life time, a manufacturing method therefor and a gas purification method. More specifically, the present invention relates to a gas processing agent made of a catalyst made of an inorganic porous material layer containing at least one selected from a group consisting of platinum, palladium, rhodium and ruthenium, or oxides thereof and an adsorbent, and a manufacturing method therefor, a gas purifier, a gas purification method and a gas purification apparatus using the gas processing agent.
Abstract:
A method of immobilizing a metal catalyst in a porous support includes additively forming a precursor structure on a substrate from a metal catalyst and at least one of a metal oxide or a metal cluster compound; exposing the precursor structure to a vapor of an organic linker; and reacting the at least one of the metal oxide or the metal cluster compound in the precursor structure with the organic linker to form a porous support that immobilizes the metal catalyst.
Abstract:
The present invention relates to a catalytic article for purifying an exhaust gas containing nitrogen oxides, which comprises a first region containing a vanadium-based SCR catalyst, a second region containing a metal-promoted molecular sieve catalyst, and a third region containing a vanadium-based SCR catalyst, wherein at least part of the second region is located downstream of at least part of the first region and upstream of at least part of the third region in the exhaust gas flow direction, provided that no part of the second region is located upstream of the first region or downstream of the third region. The present invention also relates to a method and a system for treatment of an exhaust gas containing nitrogen oxides by selective catalytic reduction using the catalytic article.
Abstract:
Disclosed in certain embodiments is a catalytic material comprising: an active precious metal component comprising platinum; a sulfur-tolerant support material comprising silica on zirconia; and a substrate having the catalytic material coated thereon.
Abstract:
Solid porous composite ZSM-5 materials comprising a generally vertical orientation of an array of pentacil-zeolite crystals on a porous substrate.
Abstract:
Methods for limiting bleed-through of aqueous catalyst solutions in ceramic articles are described herein. The methods include applying a hydrophobic cellulose derivative, such as ethylcellulose, to an exterior surface of a fired porous ceramic article. The aqueous catalyst solution is applied to the fired porous ceramic article, such that the hydrophobic cellulose derivative limits bleed-through of the aqueous catalyst solution through at least a portion of the ceramic article. Ceramic articles with skins that limit bleed-through of aqueous catalyst solutions are also described herein.
Abstract:
Provided herein are multilayered, multidimensional upconversion nanomaterial compositions and methods. In certain aspects and embodiments, the compositions and methods are useful in the photolytic degradation of a phenolic pollutant (e.g., phenol).
Abstract:
The present invention relates to a selective catalytic reduction (SCR) catalyst comprising a support, vanadium and antimony, a catalytic article comprising the SCR catalyst, and an exhaust treatment system for an internal combustion engine comprising the SCR catalyst. In one embodiment, the invention provides an SCR catalyst for reduction of 5 nitrogen oxides, comprising: a support, and an active material on the support; wherein the support, calculated as its oxide, is present in the SCR catalyst in an amount of 40 to 99% by weight, relative to the total weight of the SCR catalyst; the active material comprises vanadium and antimony; the vanadium, calculated as V2O5, is present in the SCR catalyst in an amount of 1 to 15% by weight, relative to the total weight of the SCR catalyst; the 10 antimony, calculated as Sb2O3, is present in the SCR catalyst in an amount of 0.5 to 20% by weight, relative to the total weight of the SCR catalyst; wherein the SCR catalyst, after hydrothermally aged at 550° C. for 100 hours with 10% water, has a 200-300° C. denitrification efficiency of at least 60%, with 60,000h−1 space velocity and an ammonia to NOx molar ratio of 1:11