Abstract:
An apparatus is disclosed for separating minerals in drilling fluid based primarily on density. The separator creates and maintains a slurry with a controllable density for separating minerals from drill cuttings. The density is controlled through the use of an electric coil and magnets to create a magnetic field or electrode array. The separator comprises a primary separation chamber containing the dense slurry, and a multiple number of secondary separation chambers used to separate cuttings from the drilling fluid. The invention also contains inlet hardware allowing the mixed mineral suspension to enter the first separation chamber, and hardware allowing the three outlet (separated) streams to exit the device. One of the three outlet streams carries the minerals that have a density greater than the user selectable density set point, while the second carries the minerals that have a density less than the density set point, and the third carries clean drilling fluid.
Abstract:
A water treatment composition capable of effectively adsorbing pollutants from water is described. The composition includes magnetic extractants, which comprise magnetite nanoparticles containing functional groups. The composition is used to remove from water and aqueous streams oils and other contaminants. A process for removing contaminants from water and apparatus used in the process are also described.
Abstract:
Devices and methods are provided for in-line water treatment using strong magnetic fields to influence corrosion, separate toxins, suppress bacteria and bio-fouling, as well as inhibit or greatly reduce mineral scaling due to fluid flow in or around equipment components. For example, a device is provided for applying a magnetic field to a portion of tubing through which a fluid flow, such as water, is conveyed. The device includes a number of links joined together via detachable pivoting connections, such that links may be removed and/or links may be added, thereby allowing a diameter of the device to be adjusted so as to accommodate larger or smaller piping, as necessary, for retrofitting applications. The use of magnetic treatment of fluids such as water may allow extended cycles of operation with higher concentration of mineral salts without the use of chemical scaling suppressants.
Abstract:
The present invention provides a method for efficiently separating cesium ions in a short time from an aqueous solution with the number of human working steps being reduced as much as possible and recovering the cesium ions, and an apparatus therefor.Cesium ions in an aqueous solution are removed by preparing a cesium ion-containing magnetic particle in a cesium-containing aqueous solution and filtering or magnetically separating the magnetic particle.
Abstract:
There is provided a method of aggregating a plurality of beads in a magnetic bead aggregation assay for subsequent analysis comprising: —providing magnetic beads comprising a capture probe for binding with said target analyte; —reacting the magnetic beads with the sample including a target analyte in a reaction chamber aggregating the magnetic beads in the presence of a magnetic field with the target analyte to allow formation of magnetic bead aggregates having physical properties detectable to enable characterisation of the aggregates on an aggregate by aggregate basis using a detector to measure the physical properties of the aggregates. Further provided are a method and system for detecting analytes in a sample by characterising the magnetic bead aggregates on an aggregate by aggregate basis by measuring physical properties of the aggregates.
Abstract:
A vibratory separator including a basket including a first magnetic component disposed on the basket and a motor including a motor shaft and a second magnetic component coupled to the motor shaft. Furthermore, the first magnetic component and the second magnetic component are arranged to magnetically interact, and the interaction between the first magnetic components and the second magnetic component imparts a vibratory motion to the basket. Additionally, a method of operating a vibratory separator including injecting drilling material into a vibratory separator. The vibratory separator including a basket including a first magnetic component disposed on the basket and a motor including a motor shaft and a second magnetic component coupled to the motor shaft, wherein the first magnetic component and the second magnetic component are arranged to magnetically interact, and wherein the interaction between the first magnetic components and the second magnetic component imparts a vibratory motion to the basket. Furthermore, imparting a vibratory motion to the basket by interacting the first magnetic component and the second magnetic component.
Abstract:
Provided are a mixture separation method and a separation apparatus in which processes are performed efficiently in a short time compared to conventional methods with a low load on the apparatus configuration compared to conventional methods. The present invention is a mixture separation method or a mixture separation apparatus for separating, by applying a gradient magnetic field to a paramagnetic supporting liquid containing a mixture of first particles and second particles, the mixture by particle type. A magnetic susceptibility of the first particles is lower than a magnetic susceptibility of the supporting liquid, and a magnetic susceptibility of the second particles is higher than the magnetic susceptibility of the supporting liquid. A gradient magnetic field is applied to the supporting liquid in the separation tank (7) provided with a magnetic filter means (9) using a magnetic field generating means (11), and the supporting liquid is stirred. The first particles float in the supporting liquid by a magneto-Archimedes effect. A horizontal magnetic force acts on the first particles by the gradient magnetic field, so that the first particles travel to a region lateral to or outward from the magnetic filter means (9) and are gathered in the region. The magnetic filter means (9) is excited by the gradient magnetic field to catch the second particles.
Abstract:
Magnetic actuators comprising at least one linear subarray are presented. Systems comprising such magnetic actuators and methods for using such magnetic actuators to isolate magnetic particles in a fluid are also presented. Magnetic actuators comprising at least four uniform magnets are also presented, as are systems comprising such magnetic actuators and methods for using such magnetic actuators to isolate magnetic particles in a fluid.
Abstract:
The invention relates to a centrifuge for separating a sample into at least two components, comprising a chamber for receiving a sample to be centrifuged. According to the invention, the centrifuge further comprises a means for controlling the progress of the sample separation is located at the chamber.
Abstract:
A method of enriching the iron content of low-grade iron-bearing ore materials has been developed which produces a high iron ore concentrate suitable for processing into pig iron and steel. The process includes reducing the low-grade iron-bearing ore materials to a fine particulate form and treating a water slurry of this material by applying a combination of ultrasonic treatments in a plurality of high and low intensity magnetic separation operations to remove interfering materials and concentrate magnetic and paramagnetic iron-bearing materials into a high-grade ore stock.