Abstract:
A recyclable stamp device and a recyclable stamp process for wafer bond are provided. The recyclable stamp device includes a substrate, a protective layer, a stack film structure and a cap. The protective layer is disposed on the substrate. An opening is positioned at the substrate and the protective layer to expose the substrate. The stack film structure includes an adhesion layer, a stress control layer and a wafer bond alignment mark layer. The adhesion layer is disposed on the protective layer and the exposed substrate. The stress control layer is disposed on the adhesion layer. The wafer bond alignment mark layer is disposed on the stress control layer. The wafer bond alignment mark layer includes an alignment mark at a side of the opening. The cap has a capping portion disposed on the wafer bond alignment mark layer corresponding to the opening.
Abstract:
System and methods offset mechanism elements during fabrication of Micro-Electro-Mechanical Systems (MEMS) devices. An exemplary embodiment applies a voltage across an offset mechanism element and a bonding layer of a MEMS device to generate an electrostatic charge between the offset mechanism element and the bonding layer, wherein the electrostatic charge draws the offset mechanism element to the bonding layer. The offset mechanism element and the bonding layer are then bonded.
Abstract:
An embodiment of a method of suspending a graphene membrane across a gap in a support structure includes attaching graphene to a substrate. A pre-fabricated support structure having the gap is attached to the graphene. The graphene and the pre-fabricated support structure are then separated from the substrate which leaves the graphene membrane suspended across the gap in the pre-fabricated support structure. An embodiment of a method of depositing material includes placing a support structure having a graphene membrane suspended across a gap under vacuum. A precursor is adsorbed to a surface of the graphene membrane. A portion of the graphene membrane is exposed to a focused electron beam which deposits a material from the precursor onto the graphene membrane. An embodiment of a graphene-based structure includes a support structure having a gap, a graphene membrane suspended across the gap, and a material deposited in a pattern on the graphene membrane.
Abstract:
The invention is directed to carbon nanostructure composite systems which may be useful for various applications, including as dry adhesives, self-cleaning applications, electronics and display technologies, or in a wide variety of other areas where organized nanostructures may be formed and integrated into a flexible substrate. The present invention provides systems and methods wherein organized nanotube structures or other nanostructures are embedded within an adhesive, with the properties and characteristics of the nanotubes or other nanostructures exploited for use in various applications. In one aspect, the invention is directed to a self-cleaning carbon nanotube composite material that includes a substrate, an adhesive coating on at least a portion of the substrate, a plurality of carbon nanostructures formed into a predetermined architecture, each of the plurality of nanostructures having a substantially predetermined width and length, and the architecture of the plurality of nanostructures defining at least one orientation for a plurality of nanostructures, and defining the approximate spacing between nanostructures and/or groups of nanostructures, the carbon nanostructures architecture being at least partially adhered to the adhesive coating on the substrate in a manner that the architecture is stabilized in the predetermined architecture, wherein the carbon nanostructures architecture renders the composite material superhydrophobic.
Abstract:
Methods for producing MEMS (microelectromechanical systems) devices with a thick active layer and devices produced by the method. An example method includes heavily doping a first surface of a first silicon wafer with P-type impurities, and heavily doping a first surface of a second silicon wafer with N-type impurities. The heavily doped first surfaces are then bonded together, and a second side of the first wafer opposing the first side of the first wafer is thinned to a desired thickness, which may be greater than about 30 micrometers. The second side is then patterned and etched, and the etched surface is then heavily doped with P-type impurities. A cover is then bonded to the second side of the first wafer, and the second wafer is thinned.
Abstract:
A microsystem-on-a-chip comprises a bottom wafer of normal thickness and a series of thinned wafers can be stacked on the bottom wafer, glued and electrically interconnected. The interconnection layer comprises a compliant dielectric material, an interconnect structure, and can include embedded passives. The stacked wafer technology provides a heterogeneously integrated, ultra-miniaturized, higher performing, robust and cost-effective microsystem package. The highly integrated microsystem package, comprising electronics, sensors, optics, and MEMS, can be miniaturized both in volume and footprint to the size of a bottle-cap or less.
Abstract:
A technique for forming a film of material (12) from a donor substrate (10). The technique has a step of introducing energetic particles (22) through a surface of a donor substrate (10) to a selected depth (20) underneath the surface, where the particles have a relatively high concentration to define a donor substrate material (12) above the selected depth. An energy source is directed to a selected region of the donor substrate to initiate a controlled cleaving action of the substrate (10) at the selected depth (20), whereupon the cleaving action provides an expanding cleave front to free the donor material from a remaining portion of the donor substrate.
Abstract:
A technique for forming a film of material (12) from a donor substrate (10). The technique has a step of introducing energetic particles (22) through a surface of a donor substrate (10) to a selected depth (20) underneath the surface, where the particles have a relatively high concentration to define a donor substrate material (12) above the selected depth. An energy source is directed to a selected region of the donor substrate to initiate a controlled cleaving action of the substrate (10) at the selected depth (20), whereupon the cleaving action provides an expanding cleave front to free the donor material from a remaining portion of the donor substrate.
Abstract:
This invention relates to a method for making a thin layer starting from a wafer comprising a front face with a given relief, and a back face, comprising steps consisting of: a) obtaining a support handle with a face acting as a bonding face; b) preparing the front face of the wafer, this preparation including incomplete planarisation of the front face of the wafer, to obtain a bonding energy E0 between a first value corresponding to the minimum bonding energy compatible with the later thinning step, and a second value corresponding to the maximum bonding energy compatible with the subsequent desolidarisation operation, the bonding energy E0 being such that E0=α.E, where E is the bonding energy that would be obtained if the front face of the wafer was completely planarised, α is the ratio between the incompletely planarised area of the front face of the wafer and the area of the front face of the wafer if it were completely planarised; c) solidarising the front face of the wafer on the bonding face of the support handle, by direct bonding; d) thinning the wafer starting from its back face until the thin layer is obtained; e) transferring the thin layer onto a usage support, involving separation from the support handle.
Abstract:
A stress absorbing microstructure assembly including a support substrate having an accommodation layer that has plurality of motifs engraved or etched in a surface, a buffer layer and a nucleation layer. The stress absorbing microstructure assembly may also include an insulating layer between the buffer layer and the nucleation layer. This assembly can receive thick epitaxial layers thereon with concern of causing cracking of such layers.