Abstract:
A system for production of high-quality syngas comprising a first dual fluidized bed loop having a fluid bed conditioner operable to produce high quality syngas comprising a first percentage of components other than carbon monoxide and hydrogen from a gas feed, wherein the conditioner comprises an outlet for a first catalytic heat transfer stream comprising a catalytic heat transfer material and having a first temperature, and an inlet for a second catalytic heat transfer stream comprising catalytic heat transfer material and having a second temperature greater than the first temperature; a fluid bed combustor operable to combust fuel and oxidant, wherein the fluid bed combustor comprises an inlet connected with the outlet for a first catalytic heat transfer stream of the conditioner, and an outlet connected with the inlet for a second catalytic heat transfer stream of the conditioner; and a catalytic heat transfer material.
Abstract:
A reforming apparatus for reforming a raw fuel into a hydrogen-rich reformed gas includes a reformer for generating the reformed gas from the raw fuel, and a steam supply means for supplying the steam to the reformer. The steam supply means has a dry-out heat exchanger that dries out the water by conducting heat exchange with the reformed gas generated when the raw fuel is combusted. The cross-sectional area of passage in the dry-out heat exchanger is larger than that of a pipe connected upstream of the dry-out heat exchanger.
Abstract:
A downdraft gasifier for producing a gaseous fuel to be used in an engine from a carbonaceous material with a pyrolysis module, a reactor module, and a heat exchanger system that cooperate to produce the gaseous fuel from the carbonaceous material and to extract particulates from the gaseous fuel from the reactor. The heat exchange system includes a first heat exchanger coupled to the dryer module that heats the carbonaceous material with the gaseous fuel output of the reactor module to dry the carbonaceous material; a second heat exchanger coupled to the pyrolysis module that heats the dried carbonaceous material with the exhaust from the engine to pyrolyze the dried carbonaceous material into tar gas and charcoal; and a third heat exchanger coupled to the reactor module that heats air used to combust the tar gas with the gaseous fuel output of the reactor module to preheat the air.
Abstract:
An electrically operated propellant is configured to ignite and extinguish over a range of pressures. In examples, the electrically operated propellant is included in a gas generation system having a combustion chamber and at least two electrodes coupled with the propellant. The electrically operated propellant is configured to ignite at an ignition condition and extinguish under an extinguishing condition. In the ignition condition an electrical input is applied across the electrodes to ignite the electrically operated propellant. In the extinguishing condition the electrical input is interrupted while the pressure within the combustion chamber is greater than 200 psi, and the ignited electrically operated propellant extinguishes.
Abstract:
The invention relates to the batch treatment of goods with gas, steam or vapor, for example sterilization and drying. The distribution of the medium surrounding the load (8) during all stages of such a process is important. According to the invention, movement of fluids within a batch treatment apparatus is achieved using a fluid ejector device (9), An apparatus for the gas, steam or vapor treatment of objects is provided, said apparatus having inside a closable chamber (1) at least one ejector device (9) of the type having a straight flow path for the secondary stream. Any particular fluid or mixture of different fluids entering the chamber during a treatment process may be introduced via an ejector device (9) in order to distribute the fluid around the load (8), or remove material deposited on the load (8). The invention eliminates the need for shaft seal arrangements involved with fans.
Abstract:
A fuel processor for producing a hydrogen-containing product stream from a fuel stream and an oxidant stream, comprises a mixing tube from which the combined fuel and oxidant stream is directed substantially axially into a reaction chamber. The reaction chamber comprises a turn-around chamber and a turn-around wall at one end for re-directing the combined reactant stream, so that in the turn-around chamber the re-directed stream surrounds and is in contact with the combined reactant stream flowing substantially axially in the opposite direction. This design and opposing flow configuration creates a low velocity zone which stabilizes the location of a flame in the fuel processor and offers other advantages.
Abstract:
The present invention provides an apparatus for decontaminating a region. The apparatus includes a housing that defines a chamber therein. The housing has an inlet and an outlet that communicate with the chamber. A blower circulates a carrier gas from the region, through the inlet of the housing, through the chamber and out through the outlet of the housing. An atomizer introduces an atomized mist of a fluid into the carrier gas circulated through the chamber. A diffuser is disposed relative to the outlet of the chamber for redirecting said carrier gas exiting said outlet of said chamber into a predetermined direction. The diffuser includes a heating element.
Abstract:
The inventive stage system for producing hydrogen consists of at least two upstream/downstream stages, respectively, each of which comprises, optionally, a catalytic reactor (C1 to C5) followed by a separator comprising a space (E1 to E4) for circulation of a gaseous mixture contacting at least one oxygen extracting membrane and a hydrogen collecting space, wherein the reactor (C1) of the upstream stage is connected to a reaction gaseous mixture source, the circulation stage (E1) of the upstream stage separator is connected to the reactor (C2) of the downstream stage and the spaces for extracting/collecting oxygen from two separators are connected to a hydrogen collecting circuit (TC, 8) which is common for two stages.
Abstract:
In a method by which hydrogen supplied as a combustion aid to an ammonia combustion engine is produced from ammonia, the filling amount of a decomposition catalyst in an ammonia decomposition apparatus is reduced. The method includes an ammonia decomposition apparatus that produces hydrogen as a combustion aid and an ammonia oxidation apparatus that allows a part of introduced ammonia to react with oxygen for combustion by action of an oxidation catalyst in order to supply the heat needed for the ammonia decomposition reaction, wherein the amount of ammonia and the amount of air introduced into the oxidation apparatus are controlled in accordance with the entrance temperature of an ammonia oxidation catalyst layer, so as to set the ammonia decomposition ratio in the ammonia decomposition apparatus to be 40 to 60% at all times.
Abstract:
A downdraft gasifier that utilizes a plurality of vertically positioned tubes to create a pyrolysis zone, an oxidation zone beneath the pyrolysis zone and a reduction zone beneath the oxidation zone. The shape of the tubes eliminates the need for a restriction (hearth), which limits the maximum achievable throughput. A rotating and vertically adjustable grate is located beneath, but not attached to, the reduction zone of the gasifier.