Abstract:
A radiotherapy system is disclosed. The radiotherapy system comprises an electron beam generator for generating an electron beam and a magnetic field generator for generating a magnetic field. In some embodiments of the present invention, the system further comprises a controller for controlling the electron beam and the magnetic field generators such that the electron beam is dynamically shifted and the magnetic field is dynamically redirected synchronously with the shifting.
Abstract:
The invention comprises a method and apparatus for directing charged particles into a patient from several directions. A delivery system is described that uses a primary beam line from an accelerator to a path switching magnet used to dynamically direct bunches of the positively charged particles down a selected pathway of a plurality of physically separated beam transport lines to a single patient treatment position, where the selected pathways enter the patient from two or more sides. Optionally, a repositionable treatment nozzle is repositioned to interface with each beam transport line, which allows the charged particle delivery system to use a single scanning capable nozzle in combination with delivery of the charged particles to the two or more sides of the patient to implement a tumor irradiation plan without a necessity of a moveable beamline in, at, or near a treatment room.
Abstract:
A rotating gantry is characterized in that a shielding material for attenuating a leakage dose of a secondary radiation generated by collision of a charged particle beam with an irradiation subject is provided at a position that is situated at the side opposed to a particle beam irradiation apparatus with respect to the irradiation subject and through which a beam axis of the charged particle beam passes, and wherein the shielding material is disposed in such a way that when the irradiation subject does not exist in the rotating gantry, a beam axis portion thereof that intersects the beam axis of the charged particle beam, is attachable and detachable, or can move in a sliding manner and in the rotation-axle direction of the rotating gantry.
Abstract:
A radiation system includes a radiation source having an accelerator, the radiation source having a magnetic field associated therewith that is resulted from an operation of the accelerator, and a magnetic field source configured to provide a compensating magnetic field to at least partially counteract against the magnetic field that is resulted from the operation of the accelerator. A radiation system includes a radiation device having a radiation source, a patient support, and a protective guard located between the radiation source and the patient support, wherein the protective guard is moveably coupled to the radiation device or the patient support. A radiation system includes a particle generator for generating a particle, an accelerator for accelerating the particle, and a magnetic source for changing a trajectory of the particle, wherein the magnetic source comprises a permanent magnet.
Abstract:
Provided are an aberration corrector that reduces irregularity of a magnetic field of a multipole to obtain an image of high resolution and a charged particle beam apparatus using the same. The aberration corrector includes a plurality of magnetic field type poles, a ring that magnetically connects the plurality of poles with one another and an adjustment member disposed between the pole and the ring to adjust a spacing between the pole and the ring per pole.
Abstract:
A neutron beam regulator has a magnetic coil configured around a neutron beam between the neutron beam source and a target. The magnetic coil may be used to contain the neutron beam and reduce the scattering of neutron. Neutrons have a magnetic moment and can be affected by exposure to magnetics fields. The magnetic coil may be used to modulate the neutron beam shape, intensity, velocity, direction and polarization. A magnetic coil may extend substantially the entire distance between a neutron beam source and a target. A magnetic coil may be a discrete magnetic coil having a separate power input and output from other magnetic coils and a plurality of discrete magnetic coils may be configured around the neutron beam. A magnetic coil may be a spiral magnetic coil and may be continuous, or extends substantially from the neutron beam source to the target.
Abstract:
A charged-particle beam irradiation device, which irradiates an irradiation target with a charged-particle beam, includes a transport line that transports the charged-particle beam and a rotating gantry that is rotatable about a rotation axis. The transport line includes an inclination portion making the charged-particle beam travel so that the charged-particle beam is inclined to be separated from the rotation axis, and is formed to turn the charged-particle beam in a rotation direction of the rotation axis and to bend the charged-particle beam, which has turned in the rotation direction, toward the rotation axis. The rotating gantry is formed of a cylindrical portion that receives the irradiation target and supports the transport line. The inclination portion is disposed in the cylindrical portion of the rotating gantry. The charged-particle beam irradiation device further includes blocking members that block radiation emitted from the transport line disposed in the cylindrical portion.
Abstract:
The invention relates to a high-temperature superconductor (HTS) magnet system, preferably for an insertion device for generation of high-intensity synchrotron radiation, consisting of the coil body (6), on the mantle surface of which poles with windings that lie between them are disposed, wherein at least one high-temperature superconductor strip (23) is wound onto the coil body (6) in one direction, and adjacent winding packages or sections are electrically connected with one another in such a manner that the current flow runs in opposite directions, in each instance. The solution according to the invention has the advantage of a simplified winding process, whereby individual coil pairs can be replaced, if necessary, by means of the modular arrangement. The scheme can be applied to every possible configuration of an insertion device, and is therefore also suitable for use in so-called free electron lasers and other light sources based on particle accelerators. Furthermore, complicated cooling is eliminated, so that safety problems caused by lack of cooling cannot occur.
Abstract:
The invention comprises a charged particle beam extraction method and apparatus used in conjunction with charged particle beam radiation therapy of cancerous tumors. The system uses a radio-frequency cavity system to induce betatron oscillation of a charged particle stream. Sufficient amplitude modulation of the charged particle stream causes the charged particle stream to hit a material, such as a foil. The foil decreases the energy of the charged particle stream, which decreases a radius of curvature of the charged particle stream in the synchrotron sufficiently to allow a physical separation of the reduced energy charged particle stream from the original charged particle stream. The physically separated charged particle stream is then removed from the system by use of an applied field and deflector.
Abstract:
A method of compensating mechanical, magnetic and/or electrostatic inaccuracies in a scanning charged particle beam device is described. The method includes an alignment procedure, wherein the following steps are conducted: compensating 4-fold astigmatism with an element having at least 8-pole compensation capability, wherein the aligning and compensating steps of the alignment procedure act on a charged particle beam with beam dimensions in two orthogonal directions each of at least 50 μm and coaxially aligned with at least the element having at least the 8-pole compensation capability.