Abstract:
In a method and apparatus for detecting the position of a coordinate probe relative to a digitizing tablet, a sensing coil grid provided on a working region of the tablet includes a plurality of sensing coils, each of which is U-shaped and has a front section and a grounded rear section. The coils are arranged in parallel along an axis of the working region in an overlapping manner with the front sections of consecutive ones of the coils being arranged in succession, and with the rear sections of the coils also being arranged in succession. During the sequential scanning of the coils in order to detect the electric currents induced therein and to generate a grid signal when the coordinate probe is disposed on the working region, a phase selection circuit inverts one of front and rear half-cycles of the grid signal, depending on whether a front scanning or rear scanning operation is being performed, and a signal processing circuit detects the presence of a predetermined transition of the inverted signal from the phase selection circuit. The signal processing circuit generates a count output corresponding to time elapsed before the predetermined transition is detected, and the count output is converted by a processor into a coordinate of the coordinate probe along the axis of the working region of the tablet.
Abstract:
An electromagnetic shielding composite includes a polymer and a carbon nanotube film structure. The carbon nanotube structure includes a number of carbon nanotubes disposed in the polymer. The number of carbon nanotubes are parallel with each other.
Abstract:
Proton exchange membrane compositions having high proton conductivity are provided. The proton exchange membrane composition includes a hyper-branched polymer, wherein the hyper-branched polymer has a DB (degree of branching) of more than 0.5. A polymer with high ion conductivity is distributed uniformly over the hyper-branched polymer, wherein the hyper-branched polymer has a weight ratio equal to or more than 5 wt %, based on the solid content of the proton exchange membrane composition.
Abstract:
A solar cell with a molybdenum back electrode layer and a molybdenum selenide ohmic contact layer over the molybdenum back electrode, is provided. The molybdenum selenide layer includes an accurately controlled thickness. A distinct interface exists between the molybdenum back electrode layer and the molybdenum silicide layer. The molybdenum silicide layer is produced by forming a molybdenum layer or a molybdenum nitride layer or a molybdenum oxide layer over an initially formed molybdenum layer such that an interface exists between the two layers. A selenization and sulfurization process is carried out to selectively convert the molybdenum-containing layer to molybdenum selenide but not the original molybdenum back electrode layer which remains as a molybdenum layer.
Abstract:
The present invention relates to an apparatus for spraying an etchant and a method for manufacturing a printed circuit board. In one exemplary embodiment the apparatus includes a manifold, a plurality of feed pipes in fluid communication with the manifold, each of the feed pipes having a plurality of spray nozzles mounted thereon, the feed pipes cooperatively constitute a spray region, and a pressure-boosting device configured for increasing a spray pressure of the spray nozzles which are located at a central area of the spray region. The apparatus can overcome “the puddle effect” on an upper surface of the printed circuit board.
Abstract:
A method of fabricating a solar cell includes forming a front contact layer over a substrate, and the front contact layer is optically transparent at specified wavelengths and electrically conductive. A first scribed area is scribed through the front contact layer to expose a portion of the substrate. A buffer layer doped with an n-type dopant is formed over the front contact layer and the first scribed area. An absorber layer doped with a p-type dopant is formed over the buffer layer. A back contact layer that is electrically conductive is formed over the absorber layer.
Abstract:
A multilayer printed circuit board includes a first printed circuit board, a second printed circuit board, an adhesive film, and a function layer. The adhesive film is sandwiched between the first printed circuit board and the second printed circuit board. The function layer is disposed between the first printed circuit board and the second printed circuit board for blocking water from passing therethrough and for screening electromagnetic interference between the first printed circuit board and the second printed circuit board.
Abstract:
A signal sensing structure for touch panels comprises a circuit substrate, a capacitive signal sensing unit located on the circuit substrate and an electromagnetic signal sensing unit. The capacitive signal sensing unit includes a first sensing array and a second sensing array, which are interlaced and respectively have a plurality of cascaded electrodes. The electrodes form a plurality of sensing blocks, and first gaps and second gaps are formed between the sensing blocks and vertical to each other. The electromagnetic signal sensing unit includes a first sensing line set and a second sensing line set, which are respectively arranged on the first gaps and the second gaps and vertical to each other. The circuit substrate has a capacitive signal and an electromagnetic signal sensing structures without mutual interference of different signals. Therefore, the present invention can accurately sense the variation of capacitive and electromagnetic signals.
Abstract:
A method for manufacturing a printed circuit board (PCB) having different thicknesses in different areas includes: providing a first substrate having two lateral unwanted portions bounded two imaginary boundary lines, a binder layer having a through opening and a second substrate having a mounting area for mounting electronic elements; forming two slots bounded the imaginary boundary lines in an intermediated unwanted portion of the first substrate corresponding to the mounting area; laminating the first and second substrates, and the binder layer with the mounting area exposed via the through opening; filling the two slots and the through opening with a filling material, thereby obtaining a semifinished PCB board; cutting the semifinished PCB board along the imaginary boundary lines to remove the two lateral unwanted portions and a portion of the second substrate corresponding to the two lateral unwanted portions; and removing the intermediate unwanted portion and the filling material.
Abstract:
A semiconductor structure is provided. The semiconductor structure includes a semiconductor substrate; an insulating region extending from substantially a top surface of the semiconductor substrate into the semiconductor substrate; an embedded dielectric spacer adjacent the insulating region, wherein a bottom of the embedded dielectric spacer adjoins the semiconductor substrate; and a semiconductor material adjoining a top edge and extending on a sidewall of the embedded dielectric spacer.