Abstract:
A method of a single wafer wet/dry cleaning apparatus comprising: a transfer chamber having a wafer handler contained therein; a first single wafer wet cleaning chamber directly coupled to the transfer chamber; and a first single wafer ashing chamber directly coupled to the transfer chamber.
Abstract:
A method of processing a substrate includes forming a coating layer over a front surface of the substrate and exposing the coating layer in an immersion scanner. The coating layer may include a photoresist layer. The method also includes performing one or more immersion processes on the substrate after exposure. As an example, the one or more immersion processes include an immersion post-exposure bake process.
Abstract:
Embodiments of the current invention describe ammonia hydroxide treatments for surfaces. In one embodiment, a method and a cleaning solution including ammonium hydroxide (NH4OH), water (H2O), a chelating agent, and a surfactant for cleaning silicon germanium substrates are described. The cleaning solution does not include hydrogen peroxide (H2O2) because hydrogen peroxide etches germanium. In another embodiment, a method of terminating oxidized surfaces on semiconductor substrates with terminating groups that promote the bonding of the oxidized surface to another surface with a surface treatment containing ammonium hydroxide (NH4OH) is described. The oxidized surface is immediately bonded to a second substrate after evaporation of the surface treatment.
Abstract translation:本发明的实施方案描述了表面的氨氢氧化物处理。 在一个实施方案中,包括氢氧化铵(NH 4 OH),水(H 2 O 2 O),螯合剂和用于清洁硅的表面活性剂的方法和清洗溶液 描述锗基底。 由于过氧化氢蚀刻锗,清洗溶液不包括过氧化氢(H 2 O 2 O 2)。 在另一个实施方案中,描述了通过含有氢氧化铵(NH 4 OH)的表面处理促进氧化表面与另一表面结合的端基的半导体衬底上的氧化表面的方法。 蒸发表面处理后,氧化表面立即与第二基板结合。
Abstract:
Described herein is a method of removing an organic-containing material from an exposed surface of a large substrate (at least 0.25 m2). The substrate may comprise an electronic device. The exposed surface is treated with a stripping solution comprising ozone (O3) in a solvent, where the solvent comprises acetic anhydride. The stripping solvent used to form the stripping solution may comprise a mixture of acetic anhydride with a co-solvent selected from the group consisting of a carbonate containing 2-4 carbon atoms, ethylene glycol diacetate, and combinations thereof. In some instances, the stripping solution may contain only acetic anhydride and ozone, where the ozone concentration is typically about 300 ppm or greater.
Abstract translation:本文描述了从大基材的暴露表面去除含有机物的材料(至少0.25μm2以上)的方法。 衬底可以包括电子器件。 暴露的表面在溶剂中用包含臭氧(O 3 N 3)的汽提溶液处理,其中溶剂包括乙酸酐。 用于形成汽提溶液的汽提溶剂可以包括乙酸酐与选自含2-4个碳原子的碳酸酯,乙二醇二乙酸酯及其组合的共溶剂的混合物。 在一些情况下,汽提溶液可以仅含有乙酸酐和臭氧,其中臭氧浓度通常为约300ppm或更高。
Abstract:
A method of fabricating a semiconductor device. The method comprises creating a via in a dielectric layer that is formed on a substrate, filling the via, and optionally, the surface of the dielectric layer with a sacrificial material, patterning a first photoresist layer on the sacrificial material to define a trench for the semiconductor device, removing the first photoresist layer without affecting the sacrificial material, repatterning a second photoresist layer on the sacrificial material to define the trench for the semiconductor device, forming the trench, and removing the second photoresist layer and the sacrificial material completely after the trench is formed.
Abstract:
A method and apparatus for matching impedance magnitude and impedance phase for an acoustic-wave transducer load and an RF power source. The acoustic-wave transducer load has a load impedance magnitude and phase. The RF power source has a source impedance magnitude and phase. In one embodiment of the invention, a transformer matches the source and load impedance magnitudes. A capacitor, connected in series with the transformer, matches the source impedance phase to the load impedance phase.
Abstract:
A method and apparatus for matching impedance magnitude and impedance phase for an acoustic-wave transducer load and an RF power source. The acoustic-wave transducer load has a load impedance magnitude and phase. The RF power source has a source impedance magnitude and phase. In one embodiment of the invention, a transformer matches the source and load impedance magnitudes. A capacitor, connected in series with the transformer, matches the source impedance phase to the load impedance phase.
Abstract:
The present invention is a novel cleaning method and a solution for use in a single wafer cleaning process. According to the present invention the cleaning solution comprises ammonium hydroxide (NH4OH), hydrogen peroxide (H2O2), water (H2O) and a chelating agent. In an embodiment of the present invention the cleaning solution also contains a surfactant. And still yet another embodiment of the present invention the cleaning solution also comprises a dissolved gas such as H2. In a particular embodiment of the present invention, this solution is used by spraying or dispensing it on a spinning wafer.
Abstract:
A method of and apparatus for mixing chemicals in a single wafer process. According to the present invention a chemical is fed into a valve system having a tube of a known volume. The chemical is fed into the valve system to fill the tube with a chemical to generate a measured amount of the chemical. The measured amount of chemical is then used in a single wafer process.
Abstract:
An apparatus for wet processing individual wafers comprising; a means for holding the wafer; a means for providing acoustic energy to a non-device side of the wafer; and a means for flowing a fluid onto a device side of the wafer.