Abstract:
In various embodiments, a precursor powder is pressed into an intermediate volume and chemically reduced, via sintering, to form a metallic shaped article.
Abstract:
Disclosed here is a method for making a nanoporous material, comprising aerosolizing a solution comprising at least one metal salt and at least one solvent to obtain an aerosol, freezing the aerosol to obtain a frozen aerosol, and drying the frozen aerosol to obtain a nanoporous metal compound material. Further, the nanoporous metal compound material can be reduced to obtain a nanoporous metal material.
Abstract:
The present invention concerns a method of making sintered components made from an iron-based powder composition and the sintered component per se. The method is especially suited for producing components which will be subjected to wear at elevated temperatures, consequently the components consists of a heat resistant stainless steel with hard phases including chromium carbo-nitrides. Examples of such components are parts in turbochargers for internal combustion engines.
Abstract:
A thermionic dispenser cathode having a refractory metal matrix with scandium and barium compounds in contact with the metal matrix and methods for forming the same. The invention utilizes atomic layer deposition (ALD) to form a nanoscale, uniform, conformal distribution of a scandium compound on tungsten surfaces and further utilizes in situ high pressure consolidation/impregnation to enhance impregnation of a BaO-CaO-Al2O3 based emissive mixture into the scandate-coated tungsten matrix or to sinter a tungsten/scandate/barium composite structure. The result is a tungsten-scandate thermionic cathode having improved emission.
Abstract translation:具有与金属基体接触的钪和钡化合物的难熔金属基体的热离子分配器阴极及其形成方法。 本发明利用原子层沉积(ALD)在钨表面上形成钪化合物的纳米尺度均匀的共形分布,并进一步利用原位高压固结/浸渍以增强BaO-CaO-Al 2 O 3基发射混合物的浸渍 钪酸盐涂层的钨基体或烧结钨/钪酸盐/钡复合结构。 结果是具有改善的发射的钨 - 钪酸盐热阴极。
Abstract:
There is provided a production method and a production device for producing each of the rare earth sintered magnet sintered bodies without carrying a mold in a sintering furnace. The method includes feeding an alloy powder into a mold having side walls divided into two or more sections; filling the alloy powder into the mold to prepare a filled molded-body; orienting the alloy powder in the filled molded-body by applying a magnetic field to the filled molded-body to prepare an oriented filled-molded-body; detaching the side walls of the mold from the oriented filled-molded-body and retrieving the oriented filled-molded-body from the mold; and sintering the retrieved oriented filled-molded-body. The filling step and the orienting step are performed at different locations. A pulsed magnetic field can be applied in the orienting step and inside of the mold can be partitioned into a plurality of cavities by partitions.
Abstract:
Provided are a method for producing powder for a magnet, and methods for producing a powder compact, a rare-earth-iron-based alloy material, and a rare-earth-iron-nitrogen-based alloy material. Magnetic particles constituting the powder each have a texture in which grains of a phase of a hydride of a rare-earth element are dispersed in a phase of an iron-containing material. The uniform presence of the phase of the iron-containing material in each magnetic particle results in powder having excellent formability, thereby providing a powder compact having high relative density. The powder is produced by heat-treating rare-earth-iron-based alloy powder in a hydrogen atmosphere to separate the rare-earth element and the iron-containing material and then forming a hydride of the rare-earth element. The powder is compacted. The powder compact is heat-treated in vacuum to form a rare-earth-iron-based alloy material. The rare-earth-iron-based alloy material is heat-treated in a nitrogen atmosphere to form a rare-earth-iron-nitrogen-based alloy material.
Abstract:
Disclosed are methods for producing carbon, metal and/or metal oxide porous materials that have precisely controlled structures on the nanometer and micrometer scales. The methods involve the single or repeated infiltration of porous templates with metal salts at controlled temperatures, the controlled drying and decomposition of the metal salts under reducing conditions, and optionally the removal of the template. The carbon porous materials are involve the infiltration of a carbon precursor into a porous template, followed by polymerization and pyrolysis. These porous materials have utility in separations, catalysis, among others.
Abstract:
A powder or powder granulate includes a chromium content>80 Ma %, which contains 2 to 20 Ma % iron, optionally up to 5 Ma % dopant, and optionally up to 2 Ma % oxygen, wherein the chromium-containing particles at least partially have pores. The powder displays significantly improved compression behavior and allows the production of sintered components having a very homogeneous distribution of the alloy elements.
Abstract:
A method (400) for producing a titanium product is disclosed. The method (400) can include obtaining TiO2-slag (401), and producing a titanium product from the TiO2-slag using a metallic reducing agent (402) at a moderate temperature and a pressure to directly produce a titanium product chemically separated from metal impurities in the TiO2 slag (403). The titanium product can comprise TiH2 and optionally elemental titanium. Impurities in the titanium product can then removed (404) by leaching, purifying and separation to form a purified titanium product.
Abstract:
A method for preparing an ultra-long-tube type fine-grain molybdenum tube target uses molybdenum powder with the purity being greater than 3N to prepare a target tube with a uniform wall thickness, where the length is 1700-2700 mm; the diameter is greater than 150 mm; and the wall thickness is 15-40 mm. The method includes: taking molybdenum powder, feeding the molybdenum powder into a film, molding by static pressing, placing in a medium frequency furnace, performing hydrogen sintering to form a tube blank, placing into a mold, forging the mold of a tube target, placing into tempering furnace, annealing, forming fine-grain structures, fine processing, washing, and drying to prepare a molybdenum tube target. The method overcomes defects of a sintering process and a forging process, and relates to simple processes, easy industrial production and control, reduced pollution, reduced cost, improved quality, and remarkably improved production efficiency.