摘要:
An electroconductive film for an actuator is formed from a gel composition including carbon nanofibers, an ionic liquid, and a polymer. The carbon nanofibers are produced with an aromatic mesophase pitch by melt spinning.
摘要:
An array of aligned and dispersed carbon nanotubes includes an elongate drawn body including a plurality of channels extending therethrough from a first end to a second end of the body, where the channels have a number density of at least about 100,000 channels/mm2 over a transverse cross-section of the body. A plurality of carbon nanotubes are disposed in each channel, and the carbon nanotubes are sufficiently dispersed and aligned along a length of the channels for the array to comprise an average resistivity per channel of about 9700 Ωm or less.
摘要翻译:排列和分散的碳纳米管的阵列包括细长的拉伸体,其包括从主体的第一端延伸穿过其中的多个通道,其中通道在横向上具有至少约100,000通道/ mm 2的数密度 横截面的身体。 在每个通道中设置多个碳纳米管,并且碳纳米管沿着用于阵列的通道的长度被充分地分散和排列,以包括每个通道的平均电阻率为约9700&OHgrm以下。
摘要:
A core/shell nanofiber non-woven containing a plurality of core/shell nanofibers where at least 70% of the nanofibers are bonded to other nanofibers. The core of the nanofiber contains a core polymer and the shell of the nanofiber contains a shell polymer. At least a portion of the core polymer interpenetrates the shell of the nanofiber and at least a portion of the shell polymer interpenetrates the core of the nanofiber. The process for forming a core/shell nanofiber non-woven is also disclosed.
摘要:
Mesostructured inorganic-organic materials, in the form of patterned films, monoliths, and fibers, can be prepared with controllable orientational ordering over macroscopic length scales. They are synthesized by controlling solvent removal rates across material interfaces, in conjunction with the rates of surfactant self-assembly and inorganic cross-linking and surface interactions. A method for controlling the rates and directions of solvent removal from a heterogeneous material synthesis mixture that allows the nucleation and directional alignment of self-assembling mesostructures to be controlled during synthesis is disclosed. The aligned mesostructured inorganic-organic materials and mesoporous inorganic or carbon materials can be prepared in the form of patterned films, monoliths, and fibers with controllable orientational ordering. Such materials possess anisotropic structural, mechanical, optical, reaction, or transport properties that can be exploited for numerous applications in opto-electronics, separations, fuel cells, catalysis, MEMS/microfluidics, for example.
摘要:
Methods of fabricating continuous nanofibers include the steps providing a column, flowing an extrusion liquid through the column, and flowing a precursor liquid through the extrusion liquid, wherein the flowing precursor liquid has a viscosity less than the viscosity of the extrusion liquid. The method further includes reducing the diameter of the flowing precursor liquid by extruding the precursor liquid through the extrusion liquid, wherein the diameter of the precursor liquid is reduced by a factor of at least 5, and forming a continuous nanofiber by solidifying the extruded precursor liquid.
摘要:
A method of fabricating micro- and nano-scale fiber comprises: spreading micro- and nano-scale particles into a liquid or fluid-like material prior to forcing portions of the liquid or fluid-like material that surround the particles to depart from the original liquid or fluid-like environment by using a force field; stretching to elongate the portions of the liquid or fluid-like material until the free ends of the stretched portions stop motion to complete fiber or fiber-like structures in micro- and nano-scales.
摘要:
A process of making metal nanoparticles comprising the steps of: providing a precursor composition comprising at least one metallic compound and at least one organic compound; wherein the organic compound is selected from the group consisting of an ethynyl compound, a metal-ethynyl complex, and combinations thereof; wherein the precursor composition is a liquid or solid at room temperature; and heating the precursor composition under conditions effective to produce metal nanoparticles. A metal nanoparticle composition comprising metal nanoparticles dispersed homogenously in a matrix selected from the group consisting of ethynyl polymer, crosslinked ethynyl polymer, amorphous carbon, carbon nanotubes, carbon nanoparticles, graphite, and combinations thereof.
摘要:
The configuration of a feedstock material is controlled by bringing it into contact with at least a first gas moving against it at a location with an area and thickness of the feedstock liquid that forms drops or fibers of a selected size. In one embodiment, drops of agricultural input materials are formed for spraying on agricultural fields. In another embodiment, nanofibers of materials such as chitosan or metals are formed. In another embodiment seeds are planted with gel. In another embodiment particles carrying desired agricultural inputs with modified release characteristics are delivered.
摘要:
A process of making metal nanoparticles comprising the steps of: providing a precursor composition comprising at least one metallic compound and at least one organic compound; wherein the organic compound is selected from the group consisting of an ethynyl compound, a metal-ethynyl complex, and combinations thereof; wherein the precursor composition is a liquid or solid at room temperature; and heating the precursor composition under conditions effective to produce metal nanoparticles. A metal nanoparticle composition comprising metal nanoparticles dispersed homogenously in a matrix selected from the group consisting of ethynyl polymer, crosslinked ethynyl polymer, amorphous carbon, carbon nanotubes, carbon nanoparticles, graphite, and combinations thereof.
摘要:
The invention concerns a method for reforming composite fibres comprising colloidal particles and at least a binding and/or crosslinking polymer, characterised in that it comprises: means for deforming, by cold process at room temperature or at a temperature slightly higher than room temperature, said polymer of said fibre, and means for applying, on said fibre, mechanical stresses.