Abstract:
A fully integrated, programmable mixed-signal radio transceiver comprising a radio frequency integrated circuit (RFIC) which is frequency and protocol agnostic with digital inputs and outputs, the radio transceiver being programmable and configurable for multiple radio frequency bands and standards and being capable of connecting to many networks and service providers. The RFIC includes a tunable resonant circuit that includes a transmission line having an inductance, a plurality of switchable capacitors configured to be switched into and out of the tunable resonant circuit in response to a first control signal, and at least one variable capacitor that can be varied in response to a second control signal, wherein a center resonant frequency of the resonant circuit is electronically tunable responsive to the first and second control signals that control a first capacitance value of the plurality of switchable capacitors and a second capacitance value of the at least one variable capacitor.
Abstract:
A capacitor bank adapted to provide a variable capacitance to an electronic circuit is provided. The capacitor bank has at least a most significant bit and a least significant bit and includes a first capacitor cell having a first capacitance value and disposed between a first node and a second node, thereby forming the most significant bit. The capacitor bank also includes a second capacitor cell having a second capacitance value and disposed between the first node and the second node, thereby forming the least significant bit. The second capacitance value is less than the first capacitance value. Additionally, the second capacitor cell includes a first T-network capacitor unit in electrical communication with a source of a transistor and a second T-network capacitor unit in electrical communication with a drain of the transistor.
Abstract:
In a high-frequency oscillator, a first resonance circuit and a second resonance circuit are respectively connected to a first amplifier circuit and a second amplifier circuit. A selection circuit includes a first switch circuit and a second switch circuit which selectively operate one of the first amplifier circuit and the second amplifier circuit. A grounded capacitor is connected to output sides of the first amplifier circuit and the second amplifier circuit. The grounded capacitor is commonly used by both the first amplifier circuit and the second amplifier circuit. An auxiliary grounded capacitor is connected between the first switch circuit and the first amplifier circuit. Accordingly, the grounded capacitor and the auxiliary grounded capacitor are connected to each other in parallel only when the first amplifier circuit is activated.
Abstract:
A digital capacitor array with individually shielded unit capacitors and combination binary—thermometer coded addressing is disclosed. Such a capacitor array may be part of a digitally controlled oscillator in a MEMS-based frequency reference.
Abstract:
The present invention discloses a dual-band voltage controlled oscillator (VCO), comprising a plurality of resonant circuits; an inductor module; a plurality of switches of current source; a buffer circuit; and a output port. The dual-band voltage controlled oscillator (VCO) according to the invention uses the current source in such two VCOs with different resonant frequencies as the switch device to combine the two VCOs and uses the common inductor module for the two VCOs to save the chip size.
Abstract:
A fully integrated, programmable mixed-signal radio transceiver comprising a radio frequency integrated circuit (RFIC) which is frequency and protocol agnostic with digital inputs and outputs, the radio transceiver being programmable and configurable for multiple radio frequency bands and standards and being capable of connecting to many networks and service providers. The RFIC includes a tunable resonant circuit that includes a transmission line having an inductance, a plurality of switchable capacitors configured to be switched into and out of the tunable resonant circuit in response to a first control signal, and at least one variable capacitor that can be varied in response to a second control signal, wherein a center resonant frequency of the resonant circuit is electronically tunable responsive to the first and second control signals that control a first capacitance value of the plurality of switchable capacitors and a second capacitance value of the at least one variable capacitor.
Abstract:
An oscillator includes a plurality of varactor cells to receive a control signal to control a frequency of the oscillator. Each of the varactor cells includes a switch that includes a first terninal to receive the control signal and a second terminal such that the switch operates to control a capacitance of the varactor cell in response to a voltage between the first and second terminals. The oscillator includes a bias circuit to provide a different bias voltage to each second terminal and an amplifier that is coupled to the varactor cells to generate an oscillating signal.
Abstract:
In one embodiment, the present invention includes a capacitor array that may provide a selected capacitance to a digitally controlled crystal oscillator (DCXO). The array may include multiple sections each having at least one array portion, where each section is to receive different significant portions of a digital control value. The different sections may have different coding schemes. Other embodiments are described and claimed.
Abstract:
A programmable capacitor array does not require separate switching transistors because the capacitors themselves have a switchable capacitance, which capacitors are made in the manner of regular N channel transistors with their source/drains connected to each other. When a logic low is applied to the gate, the capacitance is relatively low and the capacitance is what is commonly called parasitic capacitance. The capacitance increases significantly when a logic high is applied to the gate because the logic high has the effect of inverting the channel. Thus, the capacitor array is made of transistors that themselves have switchable capacitance operated so that no separate switching transistors are required. This allows for construction of an array of unit capacitors to achieve monotonic operation and good linearity using conventional manufacturing of N channel transistors while achieving significant area savings and reduced power consumption.
Abstract:
An arrangement and a method for connecting a capacitor into a circuit and disconnecting it therefrom are disclosed. The capacitor includes two capacitor elements, each with a main terminal and an auxiliary terminal. The auxiliary terminals are connected to one another at a reference node to which a control signal can be coupled as a function of the desired capacitance value. The capacitance value is tapped at the main terminals of the capacitor elements. When the capacitor is switched on, a high quality level is obtained, and when the capacitor is switched off, low parasitic capacitance components are obtained. For this reason the described arrangement is particularly suitable for use in voltage-controlled oscillators.