Post-CMP hybrid wafer cleaning technique
    133.
    发明授权
    Post-CMP hybrid wafer cleaning technique 有权
    CMP后混合晶片清洗技术

    公开(公告)号:US09548222B2

    公开(公告)日:2017-01-17

    申请号:US14047144

    申请日:2013-10-07

    Inventor: John H. Zhang

    Abstract: A brush-cleaning apparatus is disclosed for use in cleaning a semiconductor wafer after polishing. Embodiments of the brush-cleaning apparatus implemented with a multi-branch chemical dispensing unit are applied beneficially to clean semiconductor wafers, post-polish, using a hybrid cleaning method. An exemplary hybrid cleaning method employs a two-chemical sequence in which first and second chemical treatment modules are separate from one another, and are followed by a pH-neutralizing-rinse that occurs in a treatment module separate from the first and second chemical treatment modules. Implementation of such hybrid methods is facilitated by the multi-branch chemical dispensing unit, which provides separate chemical lines to different chemical treatment modules, and dispenses chemical to at least four different areas of each wafer during single-wafer processing in an upright orientation. The multi-branch chemical dispensing unit provides a flexible, modular building block for constructing various equipment configurations that use multiple chemical treatments and/or pH neutralization steps.

    Abstract translation: 公开了用于清洁抛光后的半导体晶片的刷子清洁装置。 使用多分支化学分配单元实施的刷子清洁装置的实施例有利地应用混合清洗方法来清洁半导体晶片,后抛光。 示例性的混合清洁方法采用其中第一和第二化学处理组件彼此分离的双化学序列,然后是在与第一和第二化学处理模块分离的处理模块中发生的pH中和漂洗 。 这种混合方法的实现通过多分支化学分配单元来实现,该分支化学分配单元向不同的化学处理模块提供单独的化学品流,并且在直立取向的单晶片处理期间将化学品分配给每个晶片的至少四个不同区域。 多分支化学分配单元提供了一种灵活的模块化构建块,用于构建使用多种化学处理和/或pH中和步骤的各种设备配置。

    Semiconductor packages separated using a sacrificial material
    134.
    发明授权
    Semiconductor packages separated using a sacrificial material 有权
    使用牺牲材料分离的半导体封装

    公开(公告)号:US09536756B1

    公开(公告)日:2017-01-03

    申请号:US14754143

    申请日:2015-06-29

    Abstract: One or more embodiments are directed to semiconductor packages that are assembled using a sacrificial material, that when removed, separates the assembled packages into individual packages. The sacrificial material may be removed by a blanket technique such that a mask, pattern, or alignment step is not needed. In one embodiment the sacrificial material is formed on the lead frame on a connecting bar of a lead frame between adjacent leads. After the molding step, the connecting bar is etched away exposing a surface of the sacrificial material. The sacrificial material is removed, thereby separating the assembled packages into individual packages.

    Abstract translation: 一个或多个实施例涉及使用牺牲材料组装的半导体封装,当被移除时,将组装的封装分离成单个封装。 可以通过覆盖技术去除牺牲材料,使得不需要掩模,图案或对准步骤。 在一个实施例中,牺牲材料形成在引线框架上的相邻引线之间的引线框架的连接杆上。 在模制步骤之后,连接杆被蚀刻掉,暴露牺牲材料的表面。 去除牺牲材料,从而将组装的包装分离成单独的包装。

    High density resistive random access memory (RRAM)
    138.
    发明授权
    High density resistive random access memory (RRAM) 有权
    高密度电阻随机存取存储器(RRAM)

    公开(公告)号:US09484535B1

    公开(公告)日:2016-11-01

    申请号:US14960712

    申请日:2015-12-07

    Abstract: A resistive random access memory (RRAM) structure is formed on a supporting substrate and includes a first electrode and a second electrode. The first electrode is made of a silicided fin on the supporting substrate and a first metal liner layer covering the silicided fin. A layer of dielectric material having a configurable resistive property covers at least a portion of the first metal liner. The second electrode is made of a second metal liner layer covering the layer of dielectric material and a metal fill in contact with the second metal liner layer. A non-volatile memory cell includes the RRAM structure electrically connected between an access transistor and a bit line.

    Abstract translation: 在支撑衬底上形成电阻随机存取存储器(RRAM)结构,并且包括第一电极和第二电极。 第一电极由支撑衬底上的硅化物翅片和覆盖硅化物翅片的第一金属衬垫层制成。 具有可配置电阻性能的电介质材料层覆盖第一金属衬垫的至少一部分。 第二电极由覆盖电介质材料层的第二金属衬垫层和与第二金属衬垫层接触的金属填充物制成。 非易失性存储单元包括电连接在存取晶体管和位线之间的RRAM结构。

    JUNCTIONLESS FINFET DEVICE AND METHOD FOR MANUFACTURE
    139.
    发明申请
    JUNCTIONLESS FINFET DEVICE AND METHOD FOR MANUFACTURE 审中-公开
    无连接FINFET器件及其制造方法

    公开(公告)号:US20160300857A1

    公开(公告)日:2016-10-13

    申请号:US14680392

    申请日:2015-04-07

    Abstract: A junctionless field effect transistor on an insulating layer of a substrate includes a fin made of semiconductor material doped with a dopant of a first conductivity type. A channel made of an epitaxial semiconductor material region doped with a dopant of a second conductivity type is in contact with a top surface of the fin. An insulated metal gate straddles the channel. A source connection is made to the epitaxial semiconductor material region on one side of said insulated metal gate, and a drain connection is made to the epitaxial semiconductor material region on an opposite side of said insulated metal gate. The epitaxial channel may further be grown from and be in contact with opposed side surfaces of the fin.

    Abstract translation: 在基板的绝缘层上的无连接场效应晶体管包括由掺杂有第一导电类型的掺杂剂的半导体材料制成的鳍。 由掺杂有第二导电类型的掺杂剂的外延半导体材料区域形成的沟道与鳍片的顶表面接触。 绝缘金属门横跨通道。 源极连接到所述绝缘金属栅极的一侧上的外延半导体材料区域,并且在所述绝缘金属栅极的相对侧上的外延半导体材料区域进行漏极连接。 外延沟道还可以从翅片的相对的侧表面生长并与其接触。

    Integrated cantilever switch
    140.
    发明授权
    Integrated cantilever switch 有权
    集成悬臂开关

    公开(公告)号:US09466452B1

    公开(公告)日:2016-10-11

    申请号:US14675359

    申请日:2015-03-31

    Abstract: An integrated transistor in the form of a nanoscale electromechanical switch eliminates CMOS current leakage and increases switching speed. The nanoscale electromechanical switch features a semiconducting cantilever that extends from a portion of the substrate into a cavity. The cantilever flexes in response to a voltage applied to the transistor gate thus forming a conducting channel underneath the gate. When the device is off, the cantilever returns to its resting position. Such motion of the cantilever breaks the circuit, restoring a void underneath the gate that blocks current flow, thus solving the problem of leakage. Fabrication of the nano-electromechanical switch is compatible with existing CMOS transistor fabrication processes. By doping the cantilever and using a back bias and a metallic cantilever tip, sensitivity of the switch can be further improved. A footprint of the nano-electromechanical switch can be as small as 0.1×0.1 μm2.

    Abstract translation: 纳米级机电开关形式的集成晶体管消除了CMOS电流泄漏并提高了开关速度。 纳米尺度的机电开关具有从衬底的一部分延伸到空腔中的半导体悬臂。 悬臂响应于施加到晶体管栅极的电压而弯曲,从而在栅极下形成导电沟道。 当设备关闭时,悬臂返回到静止位置。 悬臂的这种运动打破了电路,恢复了阻挡电流的门下方的空隙,从而解决了泄漏问题。 纳米机电开关的制造与现有的CMOS晶体管制造工艺兼容。 通过掺杂悬臂并使用背偏压和金属悬臂尖,可以进一步提高开关的灵敏度。 纳米机电开关的占地面积可以小至0.1×0.1μm2。

Patent Agency Ranking