Abstract:
A multi-chip package has a substrate with electrical contacts for connection to an external device. A CPU die is disposed on the substrate and is in communication with the substrate. The CPU die has a plurality of processor cores occupying a first area of the CPU die, and an SRAM cache occupying a second area of the CPU die. A DRAM cache is disposed on the CPU die and is in communication with the CPU die. The DRAM cache has a plurality of stacked DRAM die. The plurality of stacked DRAM dies are substantially aligned with the second area of the CPU die, and substantially do not overlap the first area of the CPU die. A multi-chip package having a DRAM cache disposed on the substrate and a CPU die disposed on the DRAM cache is also disclosed.
Abstract:
An outlet for coupling at least one data unit to digital data carried over wiring that simultaneously carry a packet-based serial digital data signal and a power signal over the same conductors. The outlet includes: a wiring connector for connecting to the wiring; a transceiver coupled to the wiring connector for transmitting and receiving packet-based serial digital data over the wiring; a LAN connector coupled to the transceiver for bi-directional packet-based data communication with at least one data unit; a bridge or a router coupled between the transceiver and the LAN connector for passing data bi-directionally between the at least one data unit and the wiring; and a single enclosure housing the above-mentioned components. The enclosure is mountable into a standard wall outlet receptacle or wall outlet opening, and the transceiver and the bridge or router are coupled to the wiring connector to be powered from the power signal.
Abstract:
A method and apparatus for organizing memory for a computer system including a plurality of memory devices 2, 3, connected to a logic device 1, particularly a memory system having a plurality of stacked memory dice connected to a logic die, with the logic device 1 having capability to analyze and compensate for differing delays to the stacked devices 2,3,4,5 stacking multiple dice divided into partitions serviced by multiple buses 21,22 connected to a logic die 1, to increase throughput between the devices 2,3 and logic 1 device allowing large scale integration of memory with self-healing capability.
Abstract:
A stack that includes non-volatile memory devices is disclosed. One of the non-volatile memory devices in the stack is a master device, and the remaining memory device or devices is a slave device(s).
Abstract:
A memory device includes core memory such as flash memory for storing data. The memory device includes a first power input to receive a first voltage used to power the flash memory. Additionally, the memory device includes a second power input to receive a second voltage. The memory device includes power management circuitry configured to receive the second voltage and derive one or more internal voltages. The power management circuitry supplies or conveys the internal voltages to the flash memory. The different internal voltages generated by the power management circuitry (e.g., voltage converter circuit) and supplied to the core memory enable operations such as read/program/erase with respect to cells in the core memory.
Abstract:
A synchronization circuit for re-synchronizing data from an input clock to an output clock is presented. The first transparent latch receives data synchronized to an input clock. A second transparent latch receives data from the first transparent latch and outputs data dependent on a delayed output clock which is the output clock delayed by an insertion delay. An output latch receives data from the second transparent latch and synchronizes data to the output clock.
Abstract:
A clock applying circuit for a synchronous memory is comprised of a clock input for receiving a clock input signal, apparatus connected to the synchronous memory for receiving a driving clock signal, and a tapped delay line for receiving the clock input signal and for delivering the clock driving signal to the synchronous memory in synchronism with but delayed from the clock input signal, the delay being a small fraction of the clock period of the clock input signal.
Abstract:
A circuit for providing an output voltage for a DRAM word line which can be used to drive memory word lines which can be as high as 2Vdd. Transistors in a boosting circuit are fully switched, eliminating reduction of the boosting voltage by Vtn through the transistors. The boosting capacitors are charge by Vdd. A regulator detects conduction current of a replica of a memory cell access transistor, shutting off the boosting circuit clock oscillator when the correct voltage to operate the access transistor has been reached.
Abstract:
A clock applying circuit for a synchronous memory is comprised of a clock input for receiving a clock input signal, apparatus connected to the synchronous memory for receiving a driving clock signal, and a tapped delay line for receiving the clock input signal and for delivering the clock driving signal to the synchronous memory in synchronism with but delayed from the clock input signal, the delay being a small fraction of the clock period of the clock input signal.
Abstract:
A circuit for providing an output voltage for a DRAM word line which can be used to drive memory word lines which can be as high as 2Vdd. Transistors in a boosting circuit are fully switched, eliminating reduction of the boosting voltage by Vtn through the transistors. The boosting capacitors are charge by Vdd. A regulator detects conduction current of a replica of a memory cell access transistor, shutting off the boosting circuit clock oscillator when the correct voltage to operate the access transistor has been reached.