Abstract:
An EFEM includes a housing 3 that constitutes a wafer transport chamber 9 that is substantially closed by connecting load ports 4 to an opening 31a provided on a wall 31, and connecting a processing apparatus 6; a wafer transport apparatus 2, and transports a wafer between the processing apparatus 6 and the FOUPs 7 mounted on the load ports 4; a gas delivery port 11; a gas suction port 12; a gas feedback path 10; and a FFU 13 that includes a filter 13b that is provided in the gas delivery port 11, and eliminates particles contained in the delivered gas, wherein the gas in the wafer transport chamber 9 is circulated by generating a downward gasflow in the wafer transport chamber 9 and feeding back the gas through the gas feedback path 10.
Abstract:
There is provided a motor controller capable of suppressing the rotation of a motor at the time of discharging an electric accumulator, and a construction machine provided with the motor controller. A motor controller 10 is provided with a current controller 1 for controlling an electric current supplied from an electric accumulator E to a motor M, and a rotation detector 2 for detecting the rotation of the motor M. The current controller 1 supplies only a d-axis current to the motor M according to a discharge command. If the rotation of the motor M is detected by the rotation detector 2 at the time of discharging the electric accumulator E, the current controller 1 controls the d-axis current so as to suppress the rotation of the motor M.
Abstract:
A load port device comprises a link mechanism that has a main moving link whose one end is connected with a door holding member in a rotatable manner, a guide that bends and extends from a horizontal direction to a vertical direction and that guides one end of the main moving link, a main moving block with which the other end of the main moving link is connected in a rotatable manner and a door hoisting shaft that extends in the vertical direction and that moves the main moving block in the extending direction. The link mechanism allows the end of the main moving link to move from the horizontal direction to the vertical direction or from the vertical direction to the horizontal direction along the guide in a state that the other end of the main moving link moves to the vertical direction.
Abstract:
A purge nozzle unit 1 includes a nozzle main body 2 including a trunk 41 and a collar section 8 protruding outward from the trunk 41 and a holder 3 including a side wall 31 that is in slidable contact with an outward face of the collar section 8 and a bottom wall 33 having a through hole 32 with which an outward face of the trunk 41 is in slidable contact and is configured such that a vent 30 in communication with the outside is formed in the holder 3 and the nozzle main body 2 is vertically moved relative to the holder 3 by regulating a pressure in a pressure-regulated space S formed between the nozzle main body 2 and the holder 3 and in communication with the vent 30.
Abstract:
The Electronic Module has a body case 2, including a plurality of case members 3, 4 and that has an internal space (S) where a first opening P1 is formed on one side surface of the internal space and a second opening P2 that opens in a direction different from that of the first opening P1 is in an exposed state when a plurality of the case members are separated each other, a substrate 5 on which a sensor IC 51 is mounted and that is housed in the internal space of the body case, and a resin body 6 that covers the substrate 5 by being filled in the internal space of the body case and solidified or hardened, and is characterized by that a plurality of the case members and the substrate 5 are integrated by the use of the resin body 6 as an accouplement.
Abstract:
The wafer transport apparatus prevents contaminant deposited on an unprocessed wafer from adhering to a processed wafer. Carrying-in load port 2A is loaded with a FOUP 1 storing an unprocessed wafer W1. Carrying-in chamber 3A has a transport robot 4A which takes out the unprocessed wafer W1 from the FOUP 1. Carrying-in load lock 5A is accessed by the transport robot 4A from the carrying-in chamber 3A side. Carrying-out load port 2B is loaded with the FOUP 1 that can store a processed wafer W2. Carrying-out chamber 3B has a transport robot 4B which passes the processed wafer W2 to the FOUP 1. Carrying-out load lock 5B is accessed by the transport robot 4B from the carrying-out chamber 3B side. The carrying-in chamber 3A and carrying-out chamber 3B are separated from each other. The carrying-in load lock 5A and carrying-out load lock 5B are arranged on different stages.
Abstract:
A rotating electric machine 100 having a rotor 1, a stator 2, and a coil 3 including a coil conductor 31 wound around teeth 21b provided on at least one of the rotor 1 and the stator 2 includes a spacer section 42 configured to extend along a slot S formed between the teeth 21b and to be inserted between turns of the coil conductor 31 to define a gap G between the turns, and a cooling medium supply section 6 configured to distribute a cooling medium in the gap G. A notched section 421 cut out in such a manner that a widthwise dimension of the spacer section 42 is relatively short is provided in a middle of an extension of the spacer section 42.
Abstract:
An EFEM includes a housing having a substantially closed substrate transfer space in the housing and a control part configured to perform a control of supplying an inert gas into at least the housing. The control part includes an inert gas total supply amount setting part configured to set a total supply amount of the inert gas to be supplied into the housing; a door open/purge determination part configured to determine whether a container door of a substrate storage container is in an open state and whether a purge device is performing a purge process; and an in-housing inert gas supply amount calculation part configured to calculate a supply amount of the inert gas to be supplied into the housing. The supply amount of the inert gas to be supplied into the housing is determined according to an inert gas supply amount command value determined based on a calculation result.
Abstract:
There is provided a load port, including: a frame including an opening via which a transfer target object is capable of passing in a substantially horizontal posture; a load port door configured to engage with a container door capable of opening and closing a loading/unloading port of a storage container including slots capable of accommodating the transfer target object in a multi-stage manner, and to open and close the opening of the frame; and a mapping mechanism configured to map information on an accommodation state including presence or absence of the transfer target object in each of the slots in the storage container via the opening and the loading/unloading port.
Abstract:
An EFEM includes: a housing including a transfer chamber where a processing object is transferred; and a connection module provided between the transfer chamber and a front chamber of a processing apparatus configured to perform a predetermined process on the processing object, and connect the transfer chamber and the front chamber, wherein the housing includes a rear member formed with a housing side opening through which the processing object is capable of passing, wherein the connection module includes: a first connection member arranged around the housing side opening when viewed from a depth direction in which the housing and the front chamber are arranged, and attached to the rear member; and a second connection member arranged around a front chamber side opening formed in the front chamber so as to allow the processing object to pass therethrough when viewed from the depth direction, and attached to the front chamber.