Abstract:
An elastic physiological detection structure includes a fabric article, a main body, an elastic member, and a detection module. The main body is combined with an internal layer of the fabric article. The main body includes at least one opening formed therein. The elastic member is combined to a surface of the main body. The detection module is combined to the elastic member and exposed outside the opening of the main body. The elastic member helps the detection module to apply an increased force from the fabric article to a surface layer of a human body, allowing the detection module located outside the opening of the main body to tightly engage the surface layer of the human body at a site where detection is to be made thereby improving the attachability of the detection module to the surface layer of the human body and enhancing stability of dynamic detection.
Abstract:
A sensor for measuring physiological characteristics includes a circuit assembly, at least one material layer, and an adhesive layer that extends beyond an outer edge of the circuit assembly. The at least one material layer forms an adhesive edge around the perimeter of the sensor.
Abstract:
A disposable measuring tool is disclosed for used during the implantation of a penile prosthesis cylinder. The measuring tool permits an accurate measurement of a dilated corpus cavernosum prepared to accept and penile prosthesis cylinder.
Abstract:
This invention relates to devices and methods for measuring and/or recording electrical signals from a body, particularly to devices and methods for recording electrical signals from a body while inside a medical imaging device, such as magnetic field scanner, such as a magnetic resonance imaging (MRI) scanner, or a computerized tomography (CT) scanner, and more particularly to devices, such as headpieces with electrodes and conductive pathways, and methods for synthesis of conductive inks used to fabricate the devices, such as with inkjet printer technology. Inkjet compatible inks may be utilized that employ nanoparticle solutions or metalorganic decomposition to generate metallic depositions, such as of silver, without sintering or other secondary processing in predetermined, including customized, layouts.
Abstract:
A three-dimensional printing system including a feed source of uncured filled resin material, a print head configured to apply discrete layers of a composition including upconversion phosphors, and a radiation source configured to irradiate layers of uncured filled resin material and deposited layers of the composition is provided. A method of three dimensionally printing a dental article is also provided.
Abstract:
A display panel and a method of manufacturing the same, a display device and a wearable intelligent device are disclosed. The display panel includes: a substrate; a display unit arranged on the substrate; a monitoring light emitting unit formed on a side of the substrate away from the display unit, for emitting monitoring light toward an object in a direction facing away from the display unit; and a light receiving unit formed on the side of the substrate away from the display unit, for receiving reflected monitoring light from the object and generating monitoring data of the object based to the reflected monitoring light. With technique solutions of the invention, devices for monitoring a user's body conditions can be integrated on the back of the substrate, that is, be integrated with the substrate, such that the display panel has a more compact structure and a more aesthetic appearance.
Abstract:
A sensor includes: a base layer; first and second conduction paths supported by the base layer; a first adhesive layer covering a first portion of the first conduction path; a second adhesive layer covering the second conduction path; an insulation sheet including: a first protecting portion covering the second adhesive laver; a second protecting portion disposed between a second portion of the first conduction path, and a part of the second conduction path; and a third protecting portion covering the first adhesive layer; a detecting section; a wireless transmitter; and a power source. When the insulation sheet is peeled off, the second portion of the first conduction path, and the part of the second conduction path are caused to be in contact with each other, and an electric power is supplied from the power source to the detecting section and the wireless transmitter.
Abstract:
An electrocardiogram detector including a pad, an electrical connection unit, a plurality of retaining members, and a plurality of electrode pieces is disclosed. The pad has a first face, a second face, and a plurality of through-holes. The electrical connection unit has an electrical connection port and a plurality of conducting lines electrically connected to the electrical connection port. The plurality of conducting lines is arranged on the first face of the pad. The plurality of retaining members is fixed to the first face of the pad and electrically connected to the plurality of conducting lines. The plurality of electrode pieces is electrically connected to the plurality of retaining members. The plurality of electrode pieces is fixed by the plurality of retaining members. In this arrangement, convenient operation of the electrocardiogram detector is improved.
Abstract:
A capillary refill measurement apparatus (1), comprising a support element (14) configured to receive the weight of a user through their foot, a light source (22) for illuminating a region of the foot that exerts weight onto the support element (14), a light detector (24) arranged to receive light from the illuminated region (36) of the foot and generate an output based on the received light, and a processor (26) configured to determine a capillary refill rate from the output of the light detector (24) when the user adjusts the amount of weight received by the support element (14).
Abstract:
Systems, devices, and methods are provided for a non-rigid wearable device comprising electrical circuitry and a support structure supporting the electrical circuitry. The support structure having rigid sections that rigidly support components of the electrical circuitry to protect components and/or solder joints from stress due to deflection and having non-rigid or flexible sections where there are no solder connections present on the electrical circuitry and/or where there are interconnecting traces present on the electrical circuitry that can tolerate stress due to deflection.