Abstract:
The present invention provides a method of predicting the risk of a patient for developing adverse drug reactions, particularly SJS or TEN. It was discovered that an HLA-B allele, HLA-B* 1502, is associated with SJS/TEN that is induced by a variety of drugs. The correlation with HLA-B* 1502 is most significant for carbamazepine-induced SJS/TEN, wherein all the patients tested have the HLA-B* 1502 allele. In addition, another HLA-B allele, HLA-B*5801, is particularly associated with SJS/TEN induced by allopurinol. Milder cutaneous reactions, such as maculopapular rash, erythema multiforme (EM), urticaria, and fixed drug eruption, are particularly associated with a third allele, HLA-B *4601. For any of the alleles, genetic markers (e.g., HLA markers, microsatellite, or single nucleotide polymorphism markers) located between DRB1 and HLA-A region of the specific HLA-B haplotype can also be used for the test.
Abstract:
For relieving typing burdens caused by incorrect spellings, typing errors, unknown spellings, and characters with diacritical marks, and for enhancing a typing efficiency of a typist with some simplified techniques, several candidate generating methods are provided for assisting the typist to pick a candidate word from a list of generated candidate words, or for selecting a candidate word from said list of generated candidate words in an automatic-selection manner. A proper-designed user interface may also be utilized for implementing the candidate generating methods.
Abstract:
A method of fabricating a group III-nitride semiconductor includes the following steps of: forming a first patterned mask layer with a plurality of first openings deposited on an epitaxial substrate; epitaxially growing a group III-nitride semiconductor layer over the epitaxial substrate and covering at least part of the first patterned mask layer; etching the group III-nitride semiconductor layer to form a plurality of second openings, which are substantially at least partially aligned with the first openings; and epitaxially growing the group III-nitride semiconductor layer again.
Abstract:
Multiplex barcoded Paired-End Ditag (mbPED) library construction for ultra high throughput sequencing is disclosed. The mbPED library comprises multiple types of barcoded Paired-End Ditag (bPED) nucleic acid fragment constructs, each of which comprises a unique barcoded adaptor, a first tag, and a second tag linked to the first tag via the barcoded adaptor. The two tags are the 5′- and 3′-ends of a nucleic acid molecule from which they originate. The barcoded adaptor comprises a barcode, a first polynucleotide sequence comprising a first restriction enzyme (RE) recognition site, and a second polynucleotide sequence comprising a second RE recognition site and covalently linked to the first polynucleotide sequence via the barcode. The two REs lead to cleavage of a nucleic acid at a defined distance from their recognition sites. The length of the adaptor is set so that the bPED nucleic acid fragment fits one-step sequencing.
Abstract:
Cellular receptors are identified that induce plasma leakage and other negative effects when infected with flaviviruses, such as dengue virus or Japanese encephamyelitis virus. Using fusion proteins disclosed herein, the receptors to which a pathogen, such as flavivirus, binds via glycan binding are determined. Once the receptors are determined, the effect of binding to a particular receptor may be determined, wherein targeting of the receptors causing a particular symptom may be targeted by agents that interrupt binding of the pathogen to the receptor. Accordingly, in the case of dengue virus and Japanese encephamyelitis virus, TNF-α is released when the pathogen binds to the DLVR1/CLEC5A receptor. Interrupting the DLVR1/CLEC5A receptor with monoclonal antibodies reduced TNF-α secretion without affecting secretion of cytokines responsible for viral clearance thereby increasing survival rates in infected mice from nil to around 50%.
Abstract:
A compound of formula (I): in which R1-R8, A, B, X, Y, m, and n are as defined herein. Also disclosed is a method for detecting a cancer cell using a compound of formula I.
Abstract:
The invention provides nucleic acids, peptides, and antibodies for use in applications including diagnosis and therapy. The peptides target lung cancer and were identified by phage display. Targeting phage PC5-2 and synthetic peptide SP5-2 were both able to recognize human pulmonary tumor specimens from lung cancer patients. In SCID mice bearing NSCLC xenografts, the targeting phage was able to target tumor masses specifically. When the peptide was coupled to liposomes containing the anti-cancer drugs vinorelbine or doxorubicin, the efficacy of these drugs against human lung cancer xenografts was improved, the survival rate increased, and the drug toxicity was reduced.
Abstract:
A purified monoclonal antibody, or an. antigen-binding portion thereof, which specifically binds to human clathrin heavy chain (CHC) is disclosed. The antibody, or antigen-binding portion, thereof, exhibits at least one, two, three, four, five, six, seven, or all eight of the following properties: (a) specifically binds to pancreatic adenocarcinoma cells; (b) binding to the cell surface and cytosol of cancer cells and tumor blood vessels; (c) internalized by CHC-expressing cells; (d) inhibiting tumor growth, invasion ability, migration, and angiogenesis; (e) inducing apoptosis in cancer cells and human umbilical vein endothelial cells; (f) inhibiting tumor growth and tumor blood vessels in pancreatic cancer in vivo; (g) suppressing epidermal growth factor, transferrin, and VEGF internalizations by cancer cells; and (h) suppressing hypoxia-inducible factor-1α expression and vascular endothelial growth factor secretion. Methods for inhibiting tumor cell growth and/or angiogenesis, and detecting cancer in a subject is also disclosed.
Abstract:
A novel beta-glucosidase and nucleic acids encoding the beta-glucosidase. Also disclosed are cells, compositions, and methods relating to using the beta-glucosidase to convert ligocellulosic material to fermentable sugars.