Abstract:
A test signal with given spectral characteristics is injected at input to the quantizer stage of the converter. The same test signal is subjected to cross-correlation with a given signal so as to generate coefficients used for filtering the quantization noise converted into digital form. In this way, a compensation signal is obtained that is applied to the output signal of the quantizer stage jointly with a first compensation signal obtained by applying, to the quantization noise converted into digital form, the same transfer function 28) of the converter. In this way a signal is obtained which, in addition to being used as the global output signal of the converter, is also used for the aforesaid operation of cross-correlation with the test signal.
Abstract:
A process for manufacturing an integrated device comprises the steps of: forming, in a first wafer of semiconductor material, integrated structures including semiconductor regions and isolation regions; forming, on a second wafer of semiconductor material, interconnection structures of a metal material including plug elements having at least one bonding region of a metal material capable of reacting with the semiconductor regions of the first wafer; and bonding the first and second wafers together by causing the bonding regions of the plug elements to react directly with the semiconductor regions so as to form a metal silicide. Thereby, the metallurgical operations for forming the interconnection structures are completely independent of the operations required for processing silicon, so that there is no interference whatsoever between the two sets of operations. In addition, the areas where the two wafers are made may be separate, and the interconnection structures may be made with materials incompatible with silicon processing, without any risk of contamination.
Abstract:
The integrated semiconductor device includes a first chip of semiconductor material having first, high-voltage, regions at a first high-value voltage; a second chip of semiconductor material having second high-voltage regions connected to the first voltage; and a third chip of semiconductor material arranged between the first chip and the second chip and having at least one low-voltage region at a second, low-value, voltage. A through connection region is formed in the third chip and is connected to the first and second high-voltage regions; through insulating regions surround the through connection region and insulate it from the low-voltage region.
Abstract:
Described herein is a read/write transducer for a hard disk drivewith dual actuation stage, comprising at least one hard disk and at least one suspension carrying the read/write transducer. The read/write transducer comprises a supporting body having a substantially parallelepipedal shape, a read/write head arranged on a front face of the supporting body, and a grating defined on one of the side faces of the supporting body during the process of manufacture of the read/write transducer. The grating enables measurement of the position of the read/write transducer with respect to the corresponding suspension in an optical way using a laser transmitter emitting and directing towards the grating a laser beam, and a laser receiver arranged to intercept the laser beam reflected by the grating and outputting a position signal on the basis of which it is possible to calculate, in a simple way, the position of the read/write transducer with respect to the corresponding suspension.
Abstract:
The buffer has an output stage formed by two complementary MOS transistors connected so as to operate in phase opposition between the supply terminals and two driver stages having the input in common. Each driver stage has a first branch comprising a current-generator connected between the gate electrode of the transistor to be driven and a supply terminal and an electronic switch controlled by the input and connected between the same gate electrode and the other supply terminal, and a second branch which comprises, connected in series, a transistor connected as a diode and an electronic switch controlled by the output, and is arranged between the gate electrode of the transistor to be driven and a respective supply terminal. The buffer can control a load with a constant switching current, is simple in structure, and occupies a small area.
Abstract:
A method is for forming a plastic protective package for an electronic device integrated on a semiconductor and comprising an electronic circuit to be encapsulated in the protective package. The electronic device may be at least partially activated from outside of the protective package. The method may include providing a mold having a half-mold with an insert abutting towards the inside of the mold and an end having an element that can be elastically deformed to abut in pressing contact against at least one portion of the integrated circuit. The method may also include injecting a resin into the mold so that the protective package has a hole by the at least one portion of the electronic circuit.
Abstract:
A multipurpose interlaced memory device functions in two different modes, synchronous and asynchronous. The memory uses a circuit for detecting address transitions by acting as a synchronous clock of the system for letting the control circuit of the memory device recognize the required access mode by enabling a comparison of the currently input external address with the one stored in the address counters of the two banks of memory cells. The memory device includes a buffer for outputting data. The buffer includes a circuit for pre-charging the output nodes to an intermediate voltage between the voltages corresponding to the two possible logic states, thus reducing noise and improving transfer time.
Abstract:
A circuit architecture and a method for performing a trimming operation directly on an application board, or after the operation of packaging integrated electronic devices. The circuit architecture includes at least one non-volatile memory unit (3) having non-volatile memory elements (5) and a circuit (17,19) for modifying the state of the memory elements (5), a first multifunctional input pin (8) whereon a sequence (25) of trimming data is received, a second multifunctional input pin (9) whereon a timing signal of the trimming operations is received, and an additional access pin (7) for switching the circuit architecture operation from a normal mode over to a trimming mode. This circuit architecture further includes a volatile memory unit (2) associated with the non-volatile memory unit (3) for storing the non-volatile memory (3) state at power-on or at a simulating phase, and storing the sequence (25) of trimming data at a programming phase; an interface (6) is provided between the first multifunctional input pin (8), the second multifunctional input pin (9), and the additional access pin (7), the at least one non-volatile memory unit (3), and the volatile memory unit (2), for initially storing the sequence of trimming data (25) into the volatile memory unit (2) and subsequently timing the trimming operation.
Abstract:
A managing system manages a plurality of VRMs associated with a plurality of microprocessors and connected in parallel together between first and second voltage references, the VRMs having output terminals connected together and arranged to communicate over a common bus. The managing system includes an error amplifier being input an output voltage signal from the VRM plurality, a reference voltage, and a droop voltage produced through an equivalent droop resistor receiving an output current signal from the VRM plurality and being connected to the common bus. The error amplifier effects a comparison of the input signals to generate a control voltage signal to the VRM plurality. Advantageously, the managing system comprises a controller connected to the equivalent droop resistor.
Abstract:
A method for digital-to-analog conversion of a digital input code into a first output analog signal and a second output analog signal to be supplied to a first terminal and a second terminal, respectively, of an audio load, the conversion being performed by means of a DAC with N-level balanced output, the conversion method includes using N/2 positive generator elements supplying respective positive elementary contributions which are nominally equal to one another, and N/2 negative generator elements supplying respective negative elementary contributions which are nominally equal to one another and, in absolute value, equal to the positive elementary contributions; attributing the same progressive addresses to the positive generator elements and to the negative generator elements; defining a first index for the positive input codes and a second index for the negative input codes; and, in the presence of an input code at the input of the DAC, selecting between the first index and the second index, the index corresponding to the sign of the input code; activating a first set of positive generator elements and a second set of negative generator elements, the number of the positive generator elements activated and the number of the negative generator elements activated being equal to one another and proportional to the input code, and the addresses of the positive generator elements activated and of the negative generator elements activated being a function of the selected index; generating the first output analog signal by summing the positive elementary contributions supplied by the positive generator elements activated, and generating the second output analog signal by summing the negative elementary contributions supplied by the negative generator elements activated; and updating the selected index according to the input code.