Abstract:
A device includes a transmitter coupled to a node, where the node is to couple to a wired link. The transmitter has a plurality of modes of operation including a calibration mode in which a range of communication data rates over the wired link is determined in accordance with a voltage margin corresponding to the wired link at a predetermined error rate. The range of communication data rates includes a maximum data rate, which can be a non-integer multiple of an initial data rate.
Abstract:
In a multirank memory system in which the clock distribution trees of each rank are permitted to drift over a wide range (e.g., low power memory systems), the fine-interleaving of commands between ranks is facilitated through the use of techniques that cause each addressed rank to properly sample commands intended for that rank, notwithstanding the drift. The ability to perform such “microthreading” provides for substantially enhanced memory capacity without sacrificing the performance of single rank systems. This disclosure provides methods, memory controllers, memory devices and system designs adapted to these ends.
Abstract:
A method is disclosed. The method includes sampling a data signal having a voltage value at an expected edge time of the data signal. A first alpha value is generated, and a second alpha value generated in dependence upon the voltage value. The data signal is adjusted by the first alpha value to derive a first adjusted signal. The data signal is adjusted by the second alpha value to derive a second adjusted signal. The first adjusted signal is sampled to output a first data value while the second adjusted signal is sampled to output a second data value. A selection is made between the first data value and the second data value as a function of a prior received data value to determine a received data value.
Abstract:
A memory device is transitioned to a low-power mode in which an active-mode resource required to receive memory access commands from a memory controller at a first command-signaling frequency of the memory device is disabled. A first memory access command, transmitted by the memory controller, is received within the memory device using an alternative signaling resource during a transitional interval in which the active-mode resource is re-enabled.
Abstract:
A device includes a transmitter coupled to a node, where the node is to couple to a wired link. The transmitter has a plurality of modes of operation including a calibration mode in which a range of communication data rates over the wired link is determined in accordance with a voltage margin corresponding to the wired link at a predetermined error rate. The range of communication data rates includes a maximum data rate, which can be a non-integer multiple of an initial data rate.
Abstract:
A memory controller encrypts contents of a page frame based at least in part on a frame key associated with the page frame. The memory controller generates a first encrypted version of the frame key based at least in part on a first process key associated with a first process, wherein the first encrypted version of the frame key is stored in a first memory table associated with the first process. The memory controller generates a second encrypted version of the frame key based at least in part on a second process key associated with a second process, wherein the second encrypted version of the frame key is stored in a second memory table associated with the second process, the first process and the second process sharing access to the page frame using the first encrypted version of the frame key and the second encrypted version of the frame key, respectively.
Abstract:
Described are systems and method for protecting data and instructions shared over a memory bus and stored in memory. Independent and separately timed stream ciphers for write and read channels allow timing variations between write and read transactions. Data and instructions can be separately encrypted prior to channel encryption to further secure the information. pad generators and related cryptographic circuits are shared for read and write data, and to secure addresses. The cryptographic circuits can support variable data widths, and in some embodiments memory devices incorporate security circuitry that can implement a shared-key algorithm using repurposed memory circuitry.
Abstract:
A transceiver architecture supports high-speed communication over a signal lane that extends between a high-performance integrated circuit (IC) and one or more relatively low-performance ICs employing less sophisticated transmitters and receivers. The architecture compensates for performance asymmetry between ICs communicating over a bidirectional lane by instantiating relatively complex transmit and receive equalization circuitry on the higher-performance side of the lane. Both the transmit and receive equalization filter coefficients in the higher-performance IC may be adaptively updated based upon the signal response at the receiver of the higher-performance IC.