Abstract:
A semiconductor device with a novel structure in which storage capacity needed for holding data can be secured even with miniaturized elements is provided. In the semiconductor device, electrodes of a capacitor are an electrode provided in the same layer as a gate of a transistor and an electrode provided in the same layer as a source and a drain of the transistor. Further, a layer in which the gate of the transistor is provided and a wiring layer connecting the gates of the transistors in a plurality of memories are provided in different layers. With this structure, parasitic capacitance formed around the gate of the transistor can be reduced, and the capacitor can be formed in a larger area.
Abstract:
Provided is a memory device with reduced overhead power. A memory device includes a first circuit retaining data in a first period during which a power supply voltage is supplied; a second circuit saving the data retained in the first circuit in the first period and retaining the data saved from the first circuit in a second period during which the power supply voltage is not supplied; and a third circuit saving the data retained in the second circuit in the second period and retaining the data saved from the second circuit in a third period during which the power supply voltage is not supplied. The third circuit includes a transistor in which a channel formation region is provided in an oxide semiconductor film and a capacitor to which a potential corresponding to the data is supplied through the transistor.
Abstract:
The first circuit has a function of retaining data in a first period during which a power supply voltage is supplied. The second circuit has functions of saving the data retained in the first circuit in the first period and retaining the data saved from the first circuit in a second period during which application of the power supply voltage is stopped. The third circuit has functions of saving the data retained in the second circuit in the second period and retaining the data saved from the second circuit in a third period during which application of the power supply voltage is stopped. The second circuit is capable of being written with the data for a shorter time than the third circuit. The third circuit is capable of maintaining the data for a longer time than the second circuit.
Abstract:
An object of the present invention is to provide a semiconductor device having a novel structure in which in a data storing time, stored data can be stored even when power is not supplied, and there is no limitation on the number of writing. A semiconductor device includes a first transistor including a first source electrode and a first drain electrode; a first channel formation region for which an oxide semiconductor material is used and to which the first source electrode and the first drain electrode are electrically connected; a first gate insulating layer over the first channel formation region; and a first gate electrode over the first gate insulating layer. One of the first source electrode and the first drain electrode of the first transistor and one electrode of a capacitor are electrically connected to each other.
Abstract:
A semiconductor device including a transistor and a capacitor which occupies a small area is provided. The semiconductor device includes a semiconductor, first and second conductive films each comprising a region in contact with top and side surfaces of the semiconductor, a first insulating film comprising a region in contact with the top and side surfaces of the semiconductor, a third conductive film comprising a region facing the top and side surfaces of the semiconductor with the first insulating film therebetween, a second insulating film which is in contact with the first conductive film and comprises an opening, a fourth conductive film comprising a region in contact with the opening, a third insulating film comprising a region facing the opening with the fourth conductive film therebetween, and a fifth conductive film comprising a region facing the fourth conductive film with the third insulating film therebetween.
Abstract:
A semiconductor device with a novel structure in which storage capacity needed for holding data can be secured even with miniaturized elements is provided. In the semiconductor device, electrodes of a capacitor are an electrode provided in the same layer as a gate of a transistor and an electrode provided in the same layer as a source and a drain of the transistor. Further, a layer in which the gate of the transistor is provided and a wiring layer connecting the gates of the transistors in a plurality of memories are provided in different layers. With this structure, parasitic capacitance formed around the gate of the transistor can be reduced, and the capacitor can be formed in a larger area.
Abstract:
An object is to provide a semiconductor device with a novel structure. The semiconductor device includes a first wiring; a second wiring; a third wiring; a fourth wiring; a first transistor having a first gate electrode, a first source electrode, and a first drain electrode; and a second transistor having a second gate electrode, a second source electrode, and a second drain electrode. The first transistor is provided in a substrate including a semiconductor material. The second transistor includes an oxide semiconductor layer.
Abstract:
A semiconductor device includes an oxide layer, a source electrode layer in contact with the oxide layer, a first drain electrode layer in contact with the oxide layer, a second drain electrode layer in contact with the oxide layer, a gate insulating film in contact with the oxide layer, a first gate electrode layer overlapping with the source electrode layer and the first drain electrode layer and overlapping with a top surface of the oxide layer with the gate insulating film interposed therebetween, a second gate electrode layer overlapping with the source electrode layer and the second drain electrode layer and overlapping with the top surface of the oxide layer with the gate insulating film interposed therebetween, and a third gate electrode layer overlapping with a side surface of the oxide layer with the gate insulating film interposed therebetween.
Abstract:
A microcontroller which operates in a low power consumption mode is provided. A microcontroller includes a CPU, a memory, and a peripheral circuit such as a timer circuit. A register in the peripheral circuit is provided in an interface with a bus line. A power gate for controlling supply control is provided. The microcontroller can operate not only in a normal operation mode where all circuits are active, but also in a low power consumption mode where some of the circuits are active. A volatile memory and nonvolatile memory are provided in a register, such as a register of the CPU. Data in the volatile memory is backed up in the nonvolatile memory before the power supply is stopped. In the case where the operation mode returns to the normal mode, when power supply is started again, data in the nonvolatile memory is written back into the volatile memory.
Abstract:
A semiconductor device includes: a source line; a bit line; a word line; a memory cell connected to the bit line and the word line; a driver circuit which drives a plurality of second signal lines and a plurality of word lines so as to select the memory cell specified by an address signal; a potential generating circuit which generates a writing potential and a plurality of reading potentials to supply to a writing circuit and a reading circuit; and a control circuit which selects one of a plurality of voltages for correction on a basis of results of the reading circuit comparing a potential of the bit line with the plurality of reading potentials.