Abstract:
Provided is a cleaning solution and its applications. The cleaning solution comprises a mixture of a basic chemical compound and a solvent solution. In some embodiments, the basic chemical compound is tetramethylammonium hydroxide (TMAH) and the solvent solution includes a solution of water and at least one of propylene glycol ethyl ether (PGEE), propylene glycol monomethylether (PGME), and propylene glycol monomethylether acetate (PGMEA). The cleaning solution is effective in removing silicon-containing material off a surface of a system or a surface of a semiconductor substrate. In some embodiments, the system comprises a pipeline for delivering the silicon-containing material in semiconductor spin-coating processes. In some embodiments, the system comprises a drain for collecting waste fluid in semiconductor spin-coating processes. In some embodiments, the silicon-containing material has a first pH value, the cleaning solution has a second pH value, and the silicon-containing material is unstable at the second pH value.
Abstract:
A method includes forming a mask layer forming a first photo resist over the mask layer, performing a first patterning step on the first photo resist, and performing a first etching step on the mask layer using the first photo resist as an etching mask. The first photo resist is then removed. The method further includes forming a particle-fixing layer on a top surface and sidewalls of the mask layer, forming a second photo resist over the particle-fixing layer and the mask layer, performing a second patterning step on the second photo resist, and performing a second etching step on the particle-fixing layer and the mask layer using the second photo resist as an etching mask. The particle-fixing layer is etched through. A target layer underlying the mask layer is etched using the mask layer as an etching mask.
Abstract:
Methods for performing a photolithographic process are disclosed. The methods facilitate the removal of photosensitive from a wafer after the photosensitive has been used as an etch mask. The photosensitive may be a negative tone photosensitive that undergoes a cross-linking process on exposure to electromagnetic energy. By limiting the cross-linking through a reduced post-exposure bake temperature and/or through reduced cross-linker loading, the photoresist, or at least a portion thereof, may have a reduced solvent strip resistance. Because of the reduced solvent strip resistance, a portion of the photosensitive may be removed using a solvent strip. After the solvent strip, a dry etch may be performed to remove remaining portions of the photoresist.
Abstract:
The present disclosure provides a sensitive material. The sensitive material comprises a copolymer that includes polymer units including a hydrophobic unit; a hydrophilic unit comprising an acid generator; and a connection unit bonded between the hydrophobic unit and the hydrophilic unit, the connection unit comprising an acid-labile group.
Abstract:
Provided is a cleaning solution and its applications. The cleaning solution comprises a mixture of a basic chemical compound and a solvent solution. In some embodiments, the basic chemical compound is tetramethylammonium hydroxide (TMAH) and the solvent solution includes a solution of water and at least one of propylene glycol ethyl ether (PGEE), propylene glycol monomethylether (PGME), and propylene glycol monomethylether acetate (PGMEA). The cleaning solution is effective in removing silicon-containing material off a surface of a system or a surface of a semiconductor substrate. In some embodiments, the system comprises a pipeline for delivering the silicon-containing material in semiconductor spin-coating processes. In some embodiments, the system comprises a drain for collecting waste fluid in semiconductor spin-coating processes. In some embodiments, the silicon-containing material has a first pH value, the cleaning solution has a second pH value, and the silicon-containing material is unstable at the second pH value.
Abstract:
A method of making a semiconductor device is provided. The method includes forming a first material layer that includes a silicon-based component having an alkyl group on a substrate, forming a photoresist layer directly on the material layer, and exposing the photoresist layer to a radiation source.
Abstract:
A system and method for anti-reflective layers is provided. In an embodiment the anti-reflective layer comprises a floating component in order to form a floating region along a top surface of the anti-reflective layer after the anti-reflective layer has dispersed. The floating component may be a floating cross-linking agent, a floating polymer resin, or a floating catalyst. The floating cross-linking agent, the floating polymer resin, or the floating catalyst may comprise a fluorine atom.
Abstract:
A system and method for anti-reflective layers is provided. In an embodiment the anti-reflective layer comprises a floating component in order to form a floating region along a top surface of the anti-reflective layer after the anti-reflective layer has dispersed. The floating component may be a floating cross-linking agent, a floating polymer resin, or a floating catalyst. The floating cross-linking agent, the floating polymer resin, or the floating catalyst may comprise a fluorine atom. The anti-reflective layers are removed using a fluid.
Abstract:
Provided is a method of fabricating a semiconductor device. A substrate is provided. A material layer is formed over the substrate. A photoresist layer is formed over the material layer. The photoresist layer contains a polymer. The polymer includes an acid labile group (ALG) that is linked to a plurality of carboxylic acid function groups. The photoresist layer is then patterned using a lithography process, for example an extreme ultraviolet (EUV) lithography process.
Abstract:
In an embodiment a radical inhibitor is included within a photoresist in order to reduce the amount of cross-linking that occurs during subsequent processing, such as an ion implantation process, that would otherwise form a crust within the photoresist. The crust can be removed in a separate process, such as a dry etch with an oxidative or reductive etchant. Alternatively, the crust may be treated to make it more hydrophyilic such that it can be removed simultaneously with the photoresist.