Abstract:
A microscopic projection or a characteristic pattern are formed in the vicinity of a region to be processed before processing using electron beam CVD, during processing an image of a region containing the projection or pattern formed by electron beam CVD is captured to obtain a current position of the projection or pattern, a difference between the position before staring and the current position is treated as a drift amount and processing is restarted at a region that has been subjected to microscopic adjustment of the electron irradiation region.
Abstract:
A viscoelasticity measuring instrument for measuring a viscoelasticity of a sample has a temperature detection control unit for obtaining, prior to a practical measurement operation, a measurement executable temperature range for the sample by an experimental temperature control operation and application of AC power. A main measurement control unit carries out a viscoelasticity measurement operation within the temperature range obtained by the temperature detection control unit.
Abstract:
A scanning probe is microscope has a cantilever having a probe at a disal end thereof and an oscillator for generating a resonance signal near a resonance of the cantilever. A vibrating device receives the resonance signal as a driving signal for vibrating the cantilever. A variable gain amplifier adjusts a gain of displacement signal corresponding to displacement of the vibrating cantilever so as to satisfy the equation G=(A/A0)*G0 to control a quality factor value of the cantilever resonance to an optimal quality factor value, where G represents a gain value of the variable gain amplifer, A represents a preselected oscillation amplitude of the oscillator, A0 represents an initial oscillation amplitude of the oscillator, and G0 represents a gain value of the variable gain amplifier when the initial oscillation amplitude of the oscillator is A0.
Abstract translation:扫描探针是显微镜,具有在其末端具有探针的悬臂和用于在悬臂共振附近产生共振信号的振荡器。 振动装置接收谐振信号作为振动悬臂的驱动信号。 可变增益放大器调整与振动悬臂的位移相对应的位移信号的增益,以满足等式G =(A / A 0 O>)* G 0 < 悬臂共振的质量因子值到最优质量因子值,其中G表示可变增益放大器的增益值,A表示振荡器的预选振荡幅度,A <0>表示初始振荡 当振荡器的初始振荡幅度为A <0> 0时,振荡器的振幅和G 0 <0>表示可变增益放大器的增益值。
Abstract:
An analysis apparatus has a measurement head for measuring characteristics of a sample, a calibration conditions file comprising at least one calibration condition obtained by carrying out device calibration for the measurement head in advance, and a measurement head controller for designating one of the calibration conditions within the calibration conditions file. Measurement sequence data comprised of a sequence of measurement steps has measurement conditions for carrying out measurements by the measurement head and the calibration conditions designated by the measurement head controller. A measurement device refers to each measurement step of the measurement sequence data and carries out measurement after inputting the measurement conditions and the calibration conditions for each measurement step to the measurement head.
Abstract:
A magnetic pole of a magnetic field type lens is divided into a first magnetic pole section that is at ground potential, and a second magnetic pole section facing a sample and to which a negative high voltage is applied, the first magnetic pole section and the second magnetic pole section 212 being electrically insulated from each other, and an electric field type bi-potential lens is made up of an electrode attached to the first magnetic pole section so as to surround an electron beam path. High resolution observation with small chromatic aberration factor Cs, Cc is made possible without forming a positive high voltage section inside an electron beam path of a lens barrel.
Abstract:
An ion beam processing device has a sample holder for fixing a sample on which a section has been formed by irradiation of a specified focused ion beam from a surface side, and gas ion beam irradiation device for irradiating a gas ion beam to a region of the sample fixing using the holder member that contains the section to remove a damage layer on the section. The gas ion beam from the gas ion beam irradiation device irradiates the section from a rear surface side of the sample at a specified incident angle.
Abstract:
A transmission X-ray analyzer for detecting a transmission X-ray image of a sample that moves relatively in a predetermined scanning direction includes; a time delay and integration (TDI) sensor including a plurality of stages of line sensors including the plurality of two-dimensionally arranged image pickup devices arranged in a direction perpendicular to the predetermined scanning direction, being configured to transfer charge accumulated in one line sensor to an adjacent subsequent line sensor; a shield unit for shielding a part of the image of light entering the TDI sensor by moving back and forth in the predetermined scanning direction, the shield unit being disposed between the TDI sensor and the sample; and a shield unit position control unit for controlling a position of the shield unit so as to shield a predetermined number of stages of line sensors among the plurality of stages of line sensors.
Abstract:
An electron microscope has a focused ion beam column positioned relative to an electron beam column so that the focused ion beam substantially perpendicularly intersects the electron beam. A backscattered electron detector is positioned relative to the focused ion beam column so that the direction normal to a detection plane of the backscattered electron detector is substantially perpendicular to the direction of the focused ion beam. The backscattered electron detector is configured and positioned to detect backscattered electrons released in a spread of at least about 70 degrees in width from the surface of the section by irradiation of the section with the electron beam 1a.
Abstract:
There is provided a composite charged particle beam apparatus, in which a first rotation axis of a rotatable stage intersects a beam irradiation axis of a FIB column and a beam irradiation axis of an SEM so as to be substantially perpendicular thereto, respectively, at a sample observing position, the rotatable stage is provided with a supporting member which can be rotated with respect to the first rotation axis, and the supporting member is connected to a movement mechanism which can dispose the sample at the sample observing position.
Abstract:
A microscope including both an atomic force microscope and a near-field optical microscope and capable of performing electrochemical measurements and a cantilever for the microscope are disclosed. A pointed light transmitting material employed as the probe of an atomic force microscope is coated with a metal layer; the metal layer is further coated with an insulating layer; the insulating layer is removed only at the distal end to expose the metal layer; the slightly exposed metal layer is employed as a working electrode; and the probe can be employed not only as the probe of the atomic force microscope and the near-field optical microscope but also as the electrode of an electrochemical microscope. Consequently, the microscope can have the functions of an atomic force microscope, a near-field optical microscope and an electrochemical microscope.