Abstract:
An image sensor includes a control circuit and pixels. Each pixel includes: a photosensitive area, a substantially rectangular storage area adjacent to the photosensitive area, and a read area. First and second insulated vertical electrodes electrically connected to each other are positioned opposite each other and delimit the storage area. The first electrode extends between the storage area and the photosensitive area. The second electrode includes a bent extension opposite a first end of the first electrode, with the storage area emerging onto the photosensitive area on the side of the first end. The control circuit operates to apply a first voltage to the first and second electrodes to perform a charge transfer, and a second voltage to block said transfer.
Abstract:
An integrated circuit die includes a substrate having a first layer of semiconductor material, a layer of dielectric material on the first layer of semiconductor material, and a second layer of semiconductor material on the layer of dielectric material. An extended channel region of a transistor is positioned in the second layer of semiconductor material, interacting with a top surface, side surfaces, and potentially portions of a bottom surface of the second layer of semiconductor material. A gate dielectric is positioned on a top surface and on the exposed side surface of the second layer of semiconductor material. A gate electrode is positioned on the top surface and the exposed side surface of the second layer of semiconductor material.
Abstract:
An electro-optic (E/O) device includes an asymmetric optical coupler having an input and first and second outputs, a first optical waveguide arm coupled to the first output of the first asymmetric optical coupler, and a second optical waveguide arm coupled to the second output of the first asymmetric optical coupler. At least one E/O amplitude modulator is coupled to at least one of the first and second optical waveguide arms. An optical combiner is coupled to the first and second optical waveguide arms downstream from the at least one E/O amplitude modulator.
Abstract:
A spectral filter is manufactured using a process wherein a first rectangular bar is formed within a first layer made of a first material, said first rectangular bar being made of a second material having a different optical index. The process further includes, in a second layer over the first layer, a second rectangular bar made of the second material. The second rectangular bar is positioned in contact with the first rectangular bar. The second layer is also made of the first material.
Abstract:
An image sensor cell formed inside and on top of a substrate of a first conductivity type, including: a read region of the second conductivity type; and, adjacent to the read region, a storage region of the first conductivity type topped with a first insulated gate electrode. The first electrode is arranged to receive, in a first operating mode, a first voltage causing the inversion of the conductivity type of the storage region, so that the storage region behaves as an extension of the read region, and, in a second operating mode, a second voltage causing no inversion of the storage region.
Abstract:
An integrated circuit includes an active device for confinement of a light flux that is formed in a semiconducting substrate. A confinement rib is separated from two doped zones by two trenches. Each doped zone includes a contacting zone on an upper face. Each trench widens from a bottom wall towards the upper face of the corresponding doped zone. The widening trenches present a sidewall having a tiered profile between the trench and the doped zone. An opposite sidewall presents a straight profile.
Abstract:
An IC image sensor device may include image sensing IC pixels arranged in an array, and pixel line pairs coupled to the image sensing IC pixels. The IC image sensor device may include circuitry coupled to the pixel line pairs and configured to operate the array in a global shutter mode. Each pair of the pixel line pairs may include a pair of spaced electrical conductors having a twist.
Abstract:
A method manufactures a capacitor having polycrystalline dielectric layer between two metallic electrodes. The dielectric layer is formed by a polycrystalline growth of a dielectric metallic oxide on one of the metallic electrodes. At least one polycrystalline growth condition of the dielectric oxide is modified during the formation of the polycrystalline dielectric layer, which results in a variation of the polycrystalline properties of the dielectric oxide within the thickness of said layer.
Abstract:
A support is provided, including a reception zone in which the external envelope matches the shape of a plate configured to be placed on a droplet deposited at least in the reception zone in order to achieve capillary self-assembly of the plate and the support, and at least one pair of tracks that extend on the support from the reception zone and that have a lyophilic-type affinity with the droplet such that an overflow of the droplet beyond the reception zone is guided in the tracks, wherein the at least one pair of tracks includes a first track and a second track that do not have the same lyophilic-type degree of affinity with the droplet.
Abstract:
The present disclosure relates to a photodiode comprising: a P-conductivity type substrate region, an electric charge collecting region for collecting electric charges appearing when a rear face of the substrate region receives light, the collecting region comprising an N-conductivity type region formed deep in the substrate region, an N-conductivity type read region formed in the substrate region, and an isolated transfer gate, formed in the substrate region in a deep isolating trench extending opposite a lateral face of the N-conductivity type region, next to the read region, and arranged for receiving a gate voltage to transfer electric charges stored in the collecting region toward the read region.