Abstract:
Topcoat compositions are provided that can be used in immersion lithography to form photoresist patterns. The topcoat compositions include a solvent system that comprises 1) a first organic solvent represented by formula (I), wherein R1 and R2 are alkyl groups of 3-8 carbons and the total number of carbons of R1 and R2 is greater than 6; and 2) a second organic solvent that is a C4 to C10 monovalent alcohol.
Abstract:
The present invention relates to a composition comprising a stable aqueous dispersion of polymer particles and a dispersant adsorbed onto the surfaces of TiO2 particles, wherein the dispersant is a water-soluble polymer functionalized with structural units of a carboxylic acid ester and tris(hydroxymethyl)aminomethane. The composition of the present invention is particularly useful for achieving high hiding for paints containing associative thickeners.
Abstract:
This remarkable invention provides: a vinyl-acrylic water base paint that contains encapsulated phase change materials of oleoresin from capsaicin or capsicum, derived directly from the placenta of the chili pepper. The paint also has fire-retardant properties, in one of its modes. The paint is also used to maintain the temperature of a closed enclosure, in a zone of temperature that depends on the components of phase change materials and where they can work in a range of temperatures suitable for zones of comfort and cooling areas, saving costs because of less use of air conditioning and heating equipment systems.
Abstract:
There is provided an ion implantation method, a composition for forming an ion implantation film and a resist underlayer film-forming composition. An ion implantation method including the steps of: forming a film by applying a film-forming composition containing a compound including an element in group 13, group 14, group 15, or group 16 and an organic solvent onto a substrate and baking the film-forming composition; and implanting impurity ions into the substrate from above through the film and introducing the element in group 13, group 14, group 15, or group 16 in the film into the substrate. The film-forming composition is a film-forming composition for ion implantation containing a compound including an element in group 13, group 14, group 15, or group 16, and an organic solvent. In addition, the underlayer film-forming composition contains a compound having at least two borate ester groups.
Abstract:
The present invention relates to a method for producing a multi-layer product comprising a) a substrate containing at least one thermoplastic substrate layer and b) at least one protective layer made of a coating composition comprising compounds with at least two functional groups, characterized in that the protective layer(s) are/is applied inline after the production of the substrate containing the substrate layer.
Abstract:
A photocurable composition contains at least one ultraviolet absorber represented by Formula (1), and a hard coating agent including the photocurable composition. wherein R1, R2 and R3 may be the same as or different from each other and represent a branched or linear alkyl group with 1-20 carbon atoms and is substituted with a (meth)acryloyloxy group; the alkyl group may be substituted with a hydroxyl group, an alkoxy group having 1-8 carbon atoms, or an acyloxy group having 1-8 carbon atoms; the alkyl group may be interrupted by an oxygen atom, a sulfur atom, a carbonyl group, an ester group, an amide group, or an imide group; and R4, R5 and R6 may be the same as or different from each other and represent a hydrogen atom, a halogen atom, a hydroxyl group, an alkyl group having 1-12 carbon atoms, or an alkoxy group having 1-12 carbon atoms.
Abstract:
An article comprises a substrate, a first functional polymeric phase change material, and a plurality of containment structures that contain the first functional polymeric phase change material. The article may further comprise a second phase change material chemically bound to at least one of the plurality of containment structures or the substrate. In certain embodiments, the article further comprises a second phase change material and a binder that contains at least one of the first polymeric phase change material and the second phase change material. The containment structure may be a microcapsule or a particulate confinement material.
Abstract:
Water-based coatings having writable-erasable surfaces are provided. The coatings have many desirable attributes. For example, the coatings cure under ambient conditions, have low or no VOC emissions during and upon curing, and have reduced tendency to form ghost images, even after prolonged normal use.
Abstract:
A molded oxide product of the present invention contains an oxide region and an organic cross-linked region and has at least a surface layer formed of an inorganic glassy material. The molded oxide product can combine both organic and inorganic advantages such as good workability of organic materials and high weather resistance, heat resistance and hardness of inorganic materials. The molded oxide product can be produced through the following steps: step A for preparing a precursor R2-M-O-M′ having a polymerizable functional group-containing organic group R2 and a M-O-M′ bond; step B for applying an application liquid containing the precursor; step C for hardening the application liquid by photocuring and/or thermosetting; and step D for performing oxidation treatment on at least a surface layer of the hardened product in such a manner as to convert at least the surface layer of the hardened product to be of inorganic glassy material.
Abstract:
The present invention relates to a method for producing a multi-layer product comprising a) a substrate containing at least one thermoplastic substrate layer and b) at least one protective layer made of a coating composition comprising compounds with at least two functional groups, characterized in that the protective layer(s) are/is applied inline after the production of the substrate containing the substrate layer.