Abstract:
A method and apparatus are provided for reducing pollutants in the exhaust gases produced from the combustion of a fuel by introducing hydroxyl and associated radicals and oxidizers into at least one of the precombustion and postcombustion gas stream of the combustion engine upstream of the catalytic converter and treating the exhaust gases with the catalytic converter.
Abstract:
Surface reactors for propellants operate with a copper/tin alloy and convert unsaturated hydrocarbons at low concentration into tin organics that are extremely highly ignitable and therefore act as ignition nuclei in the combustion of propellants. However, it loses some of its effect when used to form ignition nuclei in propellants. This is improved by melting the granular material in an alloy made from tin with at least one solution-activating alloying constituent, and then quenching it in an oxidation-preventing medium of the granular material so as to produce a particle size of up to 3 mm diameter and a large surface area. The novel granular material has a substantially larger surface area than granular material previously used for this purpose. Its efficiency is thus higher than previously possible. The granular material is not subject to aging with regard to its action as a metallic reaction partner in propellants and fuels, as a result of which the efficiency of the granular material is wholly maintained during its entire lifetime.
Abstract:
A method and apparatus are provided for improving the conversion efficiency of a catalytic converter for treating exhaust gases produced from the combustion of a fuel to at least reduce pollutants from incomplete combustion, wherein the reduction in pollutants is achieved by the introduction of ozone, upstream from the catalytic converter, to improve the efficiency of the catalytic converter.
Abstract:
Fuel compositions for internal combustion engines comprising a gasoline, a hydrocarbon-soluble allotropic form of carbon, and optionally a dispersing agent are provided. Two-cycle engines operated utilizing the fuel compositions provided herein emit lessened amounts of undesirable hydrocarbon exhaust gas emissions.
Abstract:
A hydrocarbon fuel is provided with one or more fullerene additives such as, for example, C60, C70, C74, C76, C78, C82, and C84 fullerenes, to serve as an identifying means for the fuel. The particular fullerene additive or additives may varying from the fullerene additive or additives in other fuels both by type as well as by amount or concentration present in the fuel. Thus, for example, if 7 different fullerenes are used in combinations of 1, 2, or 3 fullerenes, and in 5 different concentration amounts, there exists a possibility of as many as 4,935 different combinations of fuels which may all be separately identified by the presence of such combinations of fullerenes therein.
Abstract:
Fuel compositions for internal combustion engines and more particularly, fuel compositions for 2-cycle internal combustion engines comprising a gasoline, a hydrocarbon-soluble allotropic form of carbon, and a dispersing agent are provided. Engines operated utilizing the fuel compositions provided produce considerably lessened amounts of undesirable exhaust gas emmissions.
Abstract:
A substantially particulate-free homogeneous lubricant additive includes a first nonionic fluorochemical surfactant selected from the group consisting of fluoroaliphatic oxyethylene adducts and fluoroaliphatic oxypropylene adducts, and a second oil solubilizing nonionic surfactant and a transport or carrier medium ranging from light oil to grease. The additive also utilizes an antioxidant, a petroleum distillate solvent and a bactericide.
Abstract:
Disclosure is made of a method of improving the combustion of base fuels selected from ammonia, petroleum distillates, alcohols and amines. The method comprises the addition of hydrogen carriers to the base fuels, which possess an energy content and release it together with hydrogen for combustion upon ignition of the base fuel. The disclosure is also of novel fuel compositions which comprise from 0.5 to 15 percent by weight of a hydrogen carrier dissolved or suspended in the base fuel.
Abstract:
A colloidal magnesium suspension is prepared by grinding 400 mesh pure magnesium (99.8+%) in dry kerosene until it reaches colloidal dimensions (from about 500 to 1 millimicron) and is thereafter added in critical low concentration of 1/5 gram as substantially pure magnesium up to about 10 grams per 10 gallons of motor gasoline whereby improved burning of the gasoline is observed as evidenced by improvement in gas mileage of about 25% for the same spark and carburetor settings as compared with the gasoline to which the colloidal magnesium has not been added. Benefits are achieved with leaded as well as unleaded gasoline. Optimum amounts of about 1 - 2 grams of colloidal magnesium in 10 gallons are preferred in order to minimize air pollution, while giving maximum benefit for fuel economy.
Abstract:
This invention relates to the inhibition of lead corrosion in fuel, for example, in residual fuels, such as in those fuels used in steam boilers and gas turbines, by adding certain metals thereto such as magnesium, calcium, aluminum, silicon, and combinations thereof.