Abstract:
A surge prevention valve may be used to prevent the formation of an initial surge of high pressure. The valve may be located, for example, between a high pressure gas cylinder and a medical pressure regulator. The valve is provided with first and second valves located within a housing and integrating a pressurization orifice. The initial opening of the valve in an axial direction enables gas to flow through the pressurization orifice at a first flow rate. The full opening of the valve in the axial direction enables the gas to flow through the second valve at a second flow rate, which is much higher than the first flow rate. The controlled pressurization of the gas through the orifice delays the time during which the gas reaches full recompression.
Abstract:
A method of utilizing a divided pressure vessel in a processing system employing a carbon dioxide based solvent includes transferring a first carbon dioxide based treating solution from a first liquid chamber in a divided pressure vessel having a plurality of liquid chambers to a processing vessel, returning the first treating solution from the processing vessel to the divided pressure vessel, transferring a second carbon dioxide based treating solution having a composition different from the first treating solution from a second liquid chamber in the divided pressure vessel to a processing vessel, and returning the second treating solution from the processing vessel to the divided pressure vessel. A divided pressure vessel may allow multiple solvent baths each having a different chemical composition to be stored and/or processed in a single pressure vessel while maintaining the different chemical compositions of the multiple solvent baths. Thus, such divided pressure vessels may provide the improved operational efficiency of a carbon dioxide based system having multiple solvent baths while decreasing the capital costs that may be associated with such systems.
Abstract:
A compressed natural gas (CNG) transportation system designed to operate at or just below ambient temperatures, that is either ship-based, truck-mounted, or modular for container transportation. The system is an alternative to LNG, pipeline, or conventional CNG transportation systems, where the foregoing modes of transportation are not practical or feasible. The use of composite pressure vessels provides a critical advantage over conventional CNG concepts that use steel or steel lined pressure vessels. The rupture characteristics of composite pressure vessels exceed those of conventional steel or steel lined pressure vessels. The substantial weight reduction of pressure-equivalent composite pressure vessels overcomes the weight-related problems associated with steel or steel lined pressure vessel concepts. The corrosion resistance of composite pressure vessels allows for the transportation of raw CNG and or compressed natural gas liquids (CNGL) which are most often corrosive. The use of composite vessels with corrosion resistant liners removes the requirement to process the gas and or liquids at or near the source of supply.
Abstract:
A system and method for controlled rate freezing and storage of thermolabile substances. The system includes a storage unit for receiving product stored within a bag and an overlying protective canister associated with a robotic arm and reading device which places the canister in the preserving environment. A control system, driven by a computer monitors the ingress, egress and storage location and particularized profiles of the articles being placed in storage.
Abstract:
An installation for storing of natural gas or some other fluid comprises a lined underground storage space. Inside the rock wall of the storage space there is a concrete layer for supporting an inner impermeable lining layer. According to the invention, the concrete layer has a crack distribution control reinforcement layer closer to the impermeable lining layer than to the rock wall in order to divide large cracks into smaller cracks and distribute the cracks over a larger area of the impermeable lining layer. Further, also according to the invention, there is between the impermeable lining layer and the concrete layer a non-binding sliding layer to facilitate relative movements between the impermeable lining layer and the concrete layer.
Abstract:
A method is disclosed for loading pressurized liquefied natural gas (PLNG) into a plurality of containers containing pressurized vapor, wherein the containers are loaded in succession. The containers may be onshore or onboard a ship or other ocean transporting vessel. As a first step, the liquefied gas is introduced into the containers, thereby discharging the vapor therefrom. Vapor discharged from the containers is passed to auxiliary storage tanks comprising a first tank and a second tank. Vapor from at least one of the tanks is withdrawn and passed to a vapor utilization means such as a liquefaction plant for liquefaction of the vapor or to an engine or turbine for use of the vapor as fuel. Fluid flow to and from the first and second tanks is regulated to assure that the total flow rate of vapor to the vapor utilization means remains at a relatively constant flow rate.
Abstract:
A fluid delivery apparatus provides for controlled delivery of fluids into a fluid system. The fluid delivery apparatus can allow a defined volume of fluid to be delivered to the fluid system cleanly, minimizing fluid waste and spillage. The fluid delivery apparatus can provide a mechanical advantage allowing the fluid to be delivered easily and efficiently to a pressurized fluid system. The apparatus can have a piston and handle arrangement that can reduce wear of the apparatus.
Abstract:
Process components, containers, and pipes are provided that are constructed from ultra-high strength, low alloy steels containing less than 9 wt % nickel and having tensile strengths greater than 830 MPa (120 ksi) and DBTTs lower than about −73° C. (−100° F.).
Abstract:
Devices and methods for multiple-dose injection of a liquid, e.g., a leak detection dye or a compressor lubricant, into a closed system, e.g., a refrigeration system, are disclosed. Fluid flow through the closed system is used to flush the liquid into the system.
Abstract:
The invention in its preferred embodiment is a portable life support system providing the wearer of a garment with temperature regulation and a breathable atmosphere using cryogenic technology. Wherein a liquid cryogen is vaporized by heat exchange with the wearers body and the vaporized cryogen is delivered to the wearer as a breathable atmosphere.