Abstract:
The present application provides systems and methods for analyzing animal feeds and for adjusting animal feeds to improve the digestibility of animal feed components. Digestibility of animal feed can be determined by performing in vitro digestion of the feed and analyzing concentrations of residual components in the digested feed by NIR spectroscopy. Animal feed compositions can be adjusted to improve digestibility of components in the feed. The systems and methods of the present application can be used to determine the effect of an additive on the digestibility of feed.
Abstract:
Systems and methods for analyzing an unknown geological sample are disclosed. The system may include at least two analytical subsystems, and each of the at least two analytical subsystems provides different information about the geological sample. The data sets from various analytic subsystems are combined for further analysis, and the system includes a chemometric calibration model that relates geological attributes from analytical data previously obtained from at least two analytical techniques. A prediction engine applies the chemometric calibration model to the combined analytical information from the geological sample to predict specific geological attributes in the unknown geological sample.
Abstract:
In a noninvasive system for measurement of heart rate and other heart-related characteristics a photoplethysmogram (PPG) obtained from a tissue is divided into several feature waveforms, each corresponding to a PPG window of a particular length. Conditioned features, containing frequency components specific to heart-related events, are derived from the features by modulating a carrier kernel with such features. The conditioned features are computationally collided with one or more Zyotons that are co-dependent with the conditioned features. For each conditioned feature, one or more collisions selectively amplify frequency components in features sourced from PPG, and respective energy change values are obtained from such amplified energy portions. The resulting energy change values are analyzed to determine a smallest time-window likely containing heart rate and other heart-related events in the PPG data stream. Over time, the detected events are grouped and analyzed to determine heart rate and other heart-related characteristics.
Abstract:
Material classification using multiplexed illumination by broadband spectral light from multiple different incident angles, coupled with multi-spectral narrow band spectral measurement of light reflected from the illuminated object of unknown material, wherein selection of spectral bands for illumination or for narrow-band capture may comprise analysis of a database of labeled training material samples within a multi-class classification framework, captured using a relatively large number of spectral bands (such as 32 spectral bands), so as to select a subset of a relatively fewer number of spectral bands (such as 5 spectral bands), wherein the selected spectral bands in the subset retain a significant aptitude for distinguishing between different classifications of materials.
Abstract:
A system and method for determining the composition of a sample is provided. The system and method according to the present invention comprises: obtaining one or more spectra of the sample; obtaining one or more spectra of one or more target materials; pre-process the sample and the target spectra; providing a variable reduction means that combines certain contiguous spectral variables into a single variable, wherein the intensities of the said single variable is the sum of the intensities of the said spectral variables to be combined; determining an average spectrum and the statistic distribution of the sample and/or each of the target material in the reduced dimension; determining the likelihood the sample had the same composition of each of the one or more target material; and displaying the list of the most likely target material to a user.
Abstract:
Methods, systems and platforms for digital imaging of multiple regions of an array, and detection and counting of the labeled features thereon, are described.
Abstract:
Methods and systems for detecting at least one chemical species including obtaining a first image from a first electromagnetic radiation detector and obtaining a second image from a second electromagnetic radiation detector. The first image includes a first plurality of pixels and the second image includes a second plurality of pixels, each pixel having an associated intensity value. A first resultant image is generated. The first resultant image includes a plurality of resultant pixels, each pixel having an associated intensity value. One or more regions of interest are determined. The correlation between the first image, the second image, and the first resultant image is determined for the one or more regions of interest using a correlation coefficient algorithm to calculate a first correlation coefficient and a second correlation coefficient. The presence of the chemical species is determined based, at least in part, on the first correlation coefficient and the second correlation coefficient.
Abstract:
Non-invasive monitoring of blood constituents such as glucose, ketones, or hemoglobin A1c may be accomplished using near-infrared or short-wave infrared (SWIR) light sources through absorbance, diffuse reflection, or transmission spectroscopy. As an example, hydro-carbon related substances such as glucose or ketones have distinct spectral features in the SWIR between approximately 1500 and 2500 nm. An SWIR super-continuum laser based on laser diodes and fiber optics may be used as the light source for the non-invasive monitoring. Light may be transmitted or reflected through a tooth, since an intact tooth and its enamel and dentine may be nearly transparent in the SWIR. Blood constituents or analytes within the capillaries in the dental pulp may be detected. The non-invasive monitoring device may communicate with a device such as a smart phone or tablet, which may transmit a signal related to the measurement to the cloud with cloud-based value-added services.
Abstract:
An improved method and system for analyzing multistate fluids using NIR spectroscopy. If the sample to be tested resides in a single state condition, the configuration file used in spectroscopic analysis will only be applied against a single model. However, if the sample to be tested is in a multi-state environment, an algorithm determines which model set of a plurality of model sets should be utilized based on the sample characteristics, and the configuration file used in spectroscopic analysis will be applied against the selected model. Results are generated showing the designated parameters.
Abstract:
A synthetic projection system determines analyte concentration, such as blood glucose concentration, from a spectral-energy change associated with an uncharacterized instance of a medium in which the analyte is likely present. The projection system is factory calibrated for different instances of the medium, without needing instance-specific training or calibration. The projection system includes a set of projector curves, each relating spectral-energy change values obtained by analyzing reference medium samples to analyte concentrations in those samples. Each projector curve also corresponds to a respective range of energy-change gradients, determined using a group of surrogate media characterized according to analyte concentrations measured using a reference system. A spectral-energy-change gradient for the uncharacterized medium may be computed to select one of the projectors curves. Analyte concentration in the uncharacterized medium can be reliably computed at a specified high level of accuracy using the spectral-energy change associated therewith and the selected curve.