Abstract:
Embodiments described herein provide for flexible circuits and flexible substrates comprising VSD material that has superior characteristics for its use as an integral structural component of a device.
Abstract:
Embodiments described herein provide for programmatic design or simulation of substrates carrying electrical elements to integrate voltage switchable dielectric (“VSD”) material as a protective feature. In particular, VSD material may be incorporated into the design of a substrate device for purpose of providing protection against transient electrical conditions, such as electrostatic discharge (ESD).
Abstract:
Printed circuit boards including voltage switchable dielectric materials (VSDM) are disclosed. The VSDMs are used to protect electronic components, arranged on or embedded in printed circuit boards, against electric discharges, such as electrostatic discharges or electric overstresses. During an overvoltage event, a VSDM layer shunts excess currents to ground, thereby preventing electronic components from destruction or damage.
Abstract:
Embodiments described include a non-polymeric voltage switchable dielectric (VSD) material comprising substantially of a grain structure formed from only a single compound, processes for making same, and applications for using such non-polymeric VSD materials.
Abstract:
an electrical device that includes a first electrode and a second electrode that are separated from one another so as to form a gap structure. A layer of protective material spans the gap structure to contact the first electrode and the second electrode. A dimension of the gap structure, corresponding to a separation distance between the first electrode and the second electrode, is varied and includes a minimum separation distance that coincides with a critical path of the layer of protective material between the first electrode and the second electrode.
Abstract:
The invention provides a process for preparing an overvoltage protection material comprising: (i) preparing a mixture comprising a polymer binder precursor and a conductive material; and (ii) heating the mixture to cause reaction of the polymer binder precursor and generate a polymer matrix having conductive material dispersed therein, wherein the polymer binder precursor is chosen such that substantially no solvent is generated during the reaction.
Abstract:
A wireless communication device, such as an RFID tag, is provided material that is dielectric, unless a voltage is applied that exceeds the materials characteristic voltage level. In the presence of such voltage, the material becomes conductive. The integration of such material into the device may be mechanical and/or electrical.
Abstract:
One or more embodiments provide for a composition that includes (i) organic material that is conductive or semi-conductive, and (ii) conductor and/or semiconductor particles other than the organic material. The organic material and the conductor and/or semiconductor particles are combined to provide the composition with a characteristic of being (i) dielectric in absence of a voltage that exceeds a characteristic voltage level, and (ii) conductive with application of the voltage exceeding the characteristic voltage level.
Abstract:
A composition of voltage switchable dielectric (VSD) material that comprises a concentration of core shell particles that individually comprise an insulative core and one or more shell layers.
Abstract:
The protection of sensitive components on printed circuit boards by using planar transient protection material in one or more layers of a printed circuit board stackup is disclosed.