Abstract:
A drive circuit having asymmetrical drivers. In an embodiment, a brushless DC motor may be driven by a drive circuit having three high-side MOSFETs and three low-side MOSFETs. A driver controller turns the MOSFETs on and off according to a drive algorithm such that phase currents are injected into motor coils to be driven. The high-side MOSFETs may be sized differently than the low-side MOSFETs. As such, when a MacDonald waveform (or similar drive algorithm) is used to drive the phases of the motor, less power may be required during disk spin-up because the MOSFETs that are on more (e.g., the low-side MOSFETs with a MacDonald waveform) may be sized larger than the MOSFETs that are on less (e.g., the high-side MOSFETs). In this manner, less power is dissipated in the larger size MOSFETs that are on more than the others.
Abstract:
A wavy line interconnect structure that accommodates small metal lines and enlarged diameter vias is disclosed. The enlarged diameter vias can be formed using a self-aligned dual damascene process without the need for a separate via lithography mask. The enlarged diameter vias make direct contact with at least three sides of the underlying metal lines, and can be aligned asymmetrically with respect to the metal line to increase the packing density of the metal pattern. The resulting vias have an aspect ratio that is relatively easy to fill, while the larger via footprint provides low via resistance. An interconnect structure having enlarged diameter vias can also feature air gaps to reduce the chance of dielectric breakdown. By allowing the via footprint to exceed the minimum size of the metal line width, a path is cleared for further process generations to continue shrinking metal lines to dimensions below 10 nm.
Abstract:
A selective wet etching process is used, prior to air gap opening formation, to remove a sacrificial nitride layer from over a first region of an interconnect dielectric material containing a plurality of first conductive metal structures utilizing a titanium nitride hard mask portion located over a second region of the interconnect dielectric material as an etch mask. The titanium nitride hard mask portion located over the second region of the interconnect dielectric material is thereafter removed, again prior to air gap opening formation, utilizing another wet etch process. The wet etching processes are used instead of reactive ion etching.
Abstract:
A semiconductor material is patterned to define elongated fins insulated from an underlying substrate. A polysilicon semiconductor material is deposited over and in between the elongated fins, and is patterned to define elongated gates extending to perpendicularly cross over the elongated fins at a transistor channel. Sidewall spacers are formed on side walls of the elongated gates. Portions of the elongated fins located between the elongated gates are removed, along with the underlying insulation, to expose the underlying substrate. One or more semiconductor material layers are then epitaxially grown from the underlying substrate at locations between the elongated gates. The one or more semiconductor material layers may include an undoped epi-layer and an overlying doped epi-layer. The epitaxial material defines a source or drain of the transistor.
Abstract:
Method of making at least one transistor strained channel semiconducting structure, comprising steps to form a sacrificial gate block and insulating spacers arranged in contact with the lateral faces of the sacrificial gate block, form sacrificial regions in contact with the lateral faces of said semiconducting zone, said sacrificial regions being configured so as to apply a strain on said semiconducting zone, remove said sacrificial gate block between said insulating spacers, replace said sacrificial gate block by a replacement gate block between said insulating spacers, remove said sacrificial regions, and replace said sacrificial regions by replacement regions in contact with the lateral faces of said semiconducting zone, on a semiconducting zone that will form a transistor channel region.
Abstract:
A static induction transistor is formed on a silicon carbide substrate doped with a first conductivity type. First recessed regions in a top surface of the silicon carbide substrate are filled with epitaxially grown gate regions in situ doped with a second conductivity type. Epitaxially grown channel regions in situ doped with the first conductivity type are positioned between adjacent epitaxial gate regions. Epitaxially grown source regions in situ doped with the first conductivity type are positioned on the epitaxial channel regions. The bottom surface of the silicon carbide substrate includes second recessed regions vertically aligned with the channel regions and silicided to support formation of the drain contact. The top surfaces of the source regions are silicided to support formation of the source contact. A gate lead is epitaxially grown and electrically coupled to the gate regions, with the gate lead silicided to support formation of the gate contact.
Abstract:
Methods and systems are disclosed for reduced power consumption in communication networks, including sensor networks implemented according to IEEE 802.11ah, by organizing stations into groups having long sleep periods. By organizing the stations of the network into groups, the access point can match each group's traffic identification map with its target beacon transmit time. One embodiment organizes the stations sequentially by AID numbers. Other embodiments organize the stations by similar power save requirements and/or nearby geographical location. Forms of an Extended Traffic Identification Map are matched with an awaken Target Beacon Transmit Time of the group.
Abstract:
An embodiment of a data-read path includes a defect detector and a data-recovery circuit. The defect detector is operable to identify a defective region of a data-storage medium, and the data-recovery circuit is operable to recover data from the data-storage medium in response to the defect detector. For example, such an embodiment may allow identifying a defective region of a data-storage disk caused, e.g., by a scratch or contamination, and may allow recovering data that was written to the defective region.
Abstract:
A method and apparatus for acquiring a corrected digital image of an object includes a digital camera operable to capture a plurality of color component images, an imager body and a support arm. The support arm is coupled to the imager body and adapted to support the digital camera. An image processor is provided to produce corrected color component images and an image combiner is provided to combine the corrected color component images to form the corrected digital image. The camera is moveable to more than one position to enable to formation of three-dimensional images or images with increased depth of focus.
Abstract:
A method for making a semiconductor device may include forming, above a substrate, first and second semiconductor regions laterally adjacent one another and each including a first semiconductor material. The first semiconductor region may have a greater vertical thickness than the second semiconductor region and define a sidewall with the second semiconductor region. The method may further include forming a spacer above the second semiconductor region and adjacent the sidewall, and forming a third semiconductor region above the second semiconductor region and adjacent the spacer, with the second semiconductor region including a second semiconductor material different than the first semiconductor material. The method may also include removing the spacer and portions of the first semiconductor material beneath the spacer, forming a first set of fins from the first semiconductor region, and forming a second set of fins from the second and third semiconductor regions.