Abstract:
A method of selectively depleting pathogenic T lymphocytes from a blood cell composition is carried out by (a) combining the cell composition ex vivo with an active compound in an effective amount, and then (b) irradiating the cells with light ex vivo for a time and at an intensity sufficient to selectively kill pathogenic T lymphocytes in said cell composition. Chalcogenorhodamine photosensitizers useful as such active compounds are also described.
Abstract:
Provided herein are methods of culturing organized skeletal muscle tissue from precursor muscle cells by cyclically stretching and relaxing said muscle cells on a support in vitro for a time sufficient to produce said organized skeletal muscle tissue, including reseeding said organized skeletal muscle tissue by contacting additional precursor muscle cells to said organized skeletal muscle tissue on said solid support, and then repeating said step of cyclically stretching and relaxing said muscle cells in said support in vitro for time sufficient to enhance the density (i.e., increased number of nuclei and/or number of multinucleated cells) of said organized skeletal muscle tissue on said support.
Abstract:
In one aspect, methods are described herein for the selective detection and quantitative analysis of biological molecule compositions. A method described herein comprises providing a mixture comprising biological molecules, such as DNA, RNA or proteins, complexed with a translocating agent, such as another DNA or protein, and non-complexed biological molecules. The mixture is contacted with a membrane comprising at least one nanopore and an electric field is applied across the nanopore to selectively translocate the biological molecules complexed with the translocating agent through the at least one nanopore. Concentration of the complexed biological molecules is determined based on the translocation rate of said molecules.
Abstract:
A composition comprising a molecule for use in the delivery of the molecule to the peripheral nervous system (PNS) and/or to the central nervous system (CNS), wherein the composition is administered by regional infusion.
Abstract:
Microcapsules are described that comprise (a) a liquid aqueous or hydrogel core; (b) a semipermeable membrane surrounding said core; (c) live animal cells (e.g., pancreatic cells) in the core; and (d) oxygen-generating particles in said core, said oxygen-generating particles included in said microcapsules in an amount sufficient to lengthen the duration of viability of said animal cells in said microcapsules. Compositions comprising such microcapsules and uses thereof, such as in treating diabetes, are also described.
Abstract:
A method of increasing blood-brain barrier permeability of selected brain tissue in a subject in need thereof is carried out by: (a) parenterally administering to the subject stem cells that migrate to the brain tissue, the stem cells containing a recombinant nucleic acid, the recombinant nucleic acid comprising a nucleic acid encoding a barrier-opening protein or peptide operably associated with a heat-inducible promoter; and then (b) selectively heating the selected brain tissue sufficient to induce the expression of the barrier-opening protein or peptide in an amount effective to increase the permeability of the blood-brain barrier in the selected brain tissue. Nucleic acids, vectors, stem cells and compositions useful for carrying out such methods are also described.
Abstract:
Active compounds useful for inhibiting fatty acid synthase in a subject in need thereof are described. The active compounds are, in general, a 5-mercapto-1H-Indazole-4,7-dione or an analog thereof. The compounds are useful for treating subjects afflicted with, cancer, obesity, diabetes, a viral infection, a bacterial infection, a fungal infection, or a protozoal infection.
Abstract:
The presently disclosed subject matter provides therapeutic methods and compositions for the treatment of bacterial infections caused by Streptococcus pneumoniae. In particular, methods are provided for increasing protective antibody levels induced by pneumococcal polysaccharide vaccines in a subject in need thereof comprising administering to the subject an effective amount of an agent that inhibits the interaction between a PD-1 ligand and a PD-1 polypeptide. Immunogenic compositions are also provided comprising one or more pneumococcal polysaccharide antigens and an agent that inhibits the interaction between a PD-1 ligand and a PD-1 polypeptide.
Abstract:
A topical wound treatment composition comprises a hydrogen peroxide generator; alkaline powder; not more than 5 percent by weight of water; additional topical active agent if desired, and emollient (preferably hygroscopic emollient) to balance. When topically applied to a wound and water from the surrounding environment diffuses into the composition, the hydrogen peroxide generator and/or the alkaline compound diffuse into one another, causing a chemical reaction that generates treatment-effective amounts of oxygen to occur. The oxygen can then diffuse out of the composition and aid in wound treatment or healing.