Abstract:
Compositions including first and second silicon-containing compounds are described. The first silicon-containing compound includes a polyvalent transition metal having bonded thereto a hydrocarbyloxy group(s) and/or a (di-hydrocarbyl)(perfluoro/fluorinated-hydrocarbyl)silyloxy group(s), which is represented by Formula (I). The second silicon-containing compound includes a reaction product of a first reactant represented by Formula (II-A), which includes hyrdrocarbylsilyloxy groups, and a second reactant represented by Formula (II-B), which includes a perfluorohydrocarbyloxy group(s). The present invention also relates to, articles that include one or more layers formed from such compositions, methods of treating articles by applying thereover such compositions, and the second silicon-containing compound.
Abstract:
A mixture used for curtain coating a flexible substrate includes calcium carbonate and low density polyethylene. The calcium carbonate comprises 15%-80% by weight of the mixture and the low density polyethylene comprises 85%-20% by weight of the mixture. The calcium carbonate and the low density polyethylene are combined in a melt compounded blend.
Abstract:
The present invention relates to an inorganic paint composition, and a method for forming an inorganic paint film by using the same. The inorganic paint composition comprises: at least one alkali metal silicates represented by the following chemical formulas 1-3; phosphoric acid (H3PO4); one or more strong bases selected from KOH, NaOH and LiOH; and water (H2O) (In chemical formulas 1-3, x and y are 0.01-500, and n is a natural number of 1-20). [Chemical formula 1] xNa2O.ySiO2.nH2O, [Chemical formula 2] xK2O.ySiO2.nH2O, and [Chemical formula 3] xLi2O.ySiO2.nH2O. An inorganic coating film formed using the inorganic paint composition of the present invention has a strong binding force, regardless of the kinds of base materials, and thus shows excellent adhesion, adherence and the like to the base material and is not separated from the base material even after a long time.
Abstract:
A coated paperboard (100) comprising: a base substrate (102) having a brightness of about 65 or less measured using TAPPI T452 and a coating (104) on at least one side of the base substrate, wherein the base substrate comprises: one or more opaque layers (114) including a white filler, wherein the opaque layer covers the base substrate so that visibility of the base substrate through the opaque layer is substantially eliminated; a barrier layer (116) covering the opaque layer; wherein the barrier layer substantially prevents aqueous fluids from contacting the opaque layer, and wherein the coated paperboard has a brightness on the side of the base substrate with the coating of about 65 or more measured using TAPPI T452, and a wet brightness drop, on the side of the base substrate with the coating, of about 30 or less, measured using the wet brightness drop test.
Abstract:
The present invention relates to a panel, in particular a wall-, ceiling or floor-panel, comprising a carrier layer (71) with a front side and a rear side, wherein the carrier layer (71) comprises at least at its front side as seen from the front side the following layers: a primer layer (72); a decor layer (73), comprising a polymerizable print color; and a polymer layer (74), which preferably comprises a hardness gradient.
Abstract:
A structural member includes a simulated surface appearance. The structural member includes a substrate, plural intermediate layers, and a top coat. The plural intermediate layers are applied over at least one surface of the substrate, with at least some of the plural intermediate layers configured to cooperate with each other to provide a simulated appearance for the structural member. The top coat is applied outward of the plural intermediate layers. The top coat is relatively thin and is configured for use with exterior applications. The top coat includes a base configured for UV resistance and an additive configured to provide abrasion resistance.
Abstract:
A system and a method for providing a film having a matte finish. The system includes means for providing a coated substrate, the coated substrate comprising a first coatable material applied to a substrate, the coatable material forming a first major surface of the coated substrate; means for changing the viscosity of the first coatable material from a first viscosity to a second viscosity; a face-side roller having an outer surface positioned to contact the first major surface of the coated substrate to impart a matte finish thereon; and optionally, means for hardening the first coatable material. The method of the invention includes the steps of (1) providing a coated substrate comprising a coatable material disposed on a substrate, the coatable material providing a first major surface of the coated substrate; (2) changing the viscosity of the coatable material from the initial viscosity to a second viscosity; (3) contacting the first major surface of the coated substrate with at least one face-side roller to impart a matte finish; and (4) optionally, hardening the coatable material to provide the film.
Abstract:
The present invention relates to a non-woven fabric made of inorganic fibers, which has a coating of at least two layers on one of both surfaces, wherein (i) the non-woven fabric made of inorganic fibers has a thickness of at least 0.2 mm, (ii) the first layer of the coating comprises particles, whose particle size is between 50 and 100 μm, (iii) the second layer of the coating, which is applied onto the first layer, comprises particles, wherein more than 90% of the particles have a particle size of less than 20 μm. The non-woven fabric made of inorganic fibers according to the invention, in particular glass non-woven fabrics, are in particular suitable for producing decorative coatings for floor coverings, ceiling coverings and wall coverings.
Abstract:
There is provided a method of producing a composite that separates carbon dioxide that has a carbon dioxide separating film on a support includes preparing, at greater than or equal to 50° C., a coating liquid for carbon dioxide separating film formation that contains a water absorbent polymer, a carbon dioxide carrier and a gelling agent, and that gels, after being left at 12° C. at a solution film thickness of less than or equal to 1 mm, within 120 seconds and liquid not dropping-off due to gravity; coating the coating liquid on a strip-shaped support; cooling, at less than or equal to 12° C., a coated film obtained by the coating, and obtaining a gel film; and drying the gel film at least by warm air, and obtaining a carbon dioxide separating film, wherein, from coating to drying are carried out continuously while conveying the support in a given direction.
Abstract:
A method for applying a water-based coating (53) to a painted workpiece (49) is provided. The method includes spraying water (51) from an application nozzle unit (10) to the workpiece (49), feeding the water-based coating (53) to the workpiece (49), and finally applying streams of compressed air onto the water-based coating (53) to spread uniformly the water-based coating (53).