Abstract:
An amorphous multi-layered structure (100, 200) is formed by a method including the steps of: i) positioning a deposition substrate (101) in a physical vapor deposition apparatus (300, 400, 500) ii) ionizing a precursor of a multi-phase material within the physical vapor deposition apparatus (300, 400, 500) iv) modulating the total ion impinging energy of the ions to deposit layers having predetermined properties corresponding to the total ion impinging energy values.
Abstract:
Process for the production of a field effect electron source and source obtained by said process, application to display means by cathodoluminescence. On an insulating substrate (2), said source comprises at least one cathode conductor (4), an insulating layer (6) covering the latter, at least one grid (8) formed on the insulating layer, holes (10) being formed through said grid and the insulating layer, and microtips (12) made from an electron emitting, metallic material, formed in said holes and covered with a deposit (13) of carbon diamond or diamond like carbon particles formed by electrophoresis or by joint electrochemical deposition of metal and carbon diamond or diamond like carbon.
Abstract:
A field effect electron source includes a grid electrode formed over an insulating layer that covers a cathode electrode formed on an insulating substrate. Holes are provided in the grid electrode-insulating layer structure, the holes extending to the cathode electrode formed on the insulating substrate. Electron emitting microheaps are formed within the holes above the exposed portions of the cathode electrode on the substrate. These microheaps each include at least a macropile of carbon diamond or diamond like carbon powder grains surrounded by the sidewalls of the hole.
Abstract:
A matrix field-emission cathode (5) comprises a monocrystalline silicon substrate (7) on which are arranged epitaxially grown pointed silicon emitters (1) which also act as ballast resistors connected in series to the emitters. In an advantageous embodiment of the proposed cathode, for a radius of curvature (r) at the emitter tip not exceeding 10 nm, the ratio of the height (h) of the emitter to the radius (r) is not less than 1000, while the ratio of height (h) to the diameter (D) at the emitter base is not less than 1. The angle .alpha. at the emitter tip does not exceed 30.degree.. The specific resistance of the emitter material is chosen so as to ensure that the resistance of each emitter will be comparable with the resistance between the cathode and the opposing electrode. The proposed cathode is used in an electronic device for displaying information which also has an anode (3) in the form of a strip (11) of phosphorescent material (10) and a conducting layer (9) whose projection onto the cathode (5) is perpendicular to the conducting paths (6) on the cathode; the anode itself acts as the control electrode.
Abstract:
Applicants have discovered methods for making, treating and using diamonds which substantially enhance their capability for low voltage emission. Specifically, applicants have discovered that defect-rich diamonds--diamonds grown or treated to increase the concentration of defects--have enhanced properties of low voltage emission. Defect-rich diamonds are characterized in Raman spectroscopy by a diamond peak at 1332 cm.sup.-1 broadened by a full width at half maximum .DELTA.K in the range 5-15 cm.sup.-1 (and preferably 7-11 cm.sup.-1). Such defect-rich diamonds can emit electron current densities of 0.1 mA/mm.sup.2 or more at a low applied field of 25 V/.mu.m or less. Particularly advantageous structures use such diamonds in an array of islands or particles each less than 10 .mu.m in diameter at fields of 15 V/.mu.m or less.
Abstract:
A gated filament structure for a field emission display includes a plurality of filaments. Included is a substrate, an insulating layer positioned adjacent to the substrate, and a metal gate layer position adjacent to the insulating layer. The metal gate layer has a plurality of gates, the metal gate layer having an average thickness "s" and a top metal gate layer planar surface that is substantially parallel to a bottom metal gate layer planar surface. The metal gate layer includes a plurality of apertures extending through the gates. Each aperture has an average width "r" along a bottom planar surface of the aperture. Each aperture defines a midpoint plane positioned parallel to and equally distant from the top metal gate layer planar surface and the bottom metal gate layer planar surface. A plurality of filaments are individually positioned in an aperture. Each filament has a filament axis. The intersection of the filament axis and the midpoint plane defines a point "O". Each filament includes a filament tip terminating at a point "A". A majority of all filament tips of the display have a length "L" between each filament tip at point A and point O along the filament axis where, L.ltoreq.(s+r)/2.
Abstract:
An electron emitter formed with a layer of diamond-like carbon having a diamond bond structure with an electrically active defect at an emission site. The electrically active defect acts like a very thin electron emitter with a very low work function and improved current characteristics, including in improved saturation current.
Abstract:
A novel and advantageous cathode structure for a field emission display apparatus is disclosed. A given pixel comprises a multiplicity of spaced apart emitter bodies on a support. A given emitter body comprises diamond and/or rare earth boride, and has a relatively sharp geometrical feature that facilitates electron emission from the emitter body. By way of example, the emitter body comprises diamond bodies grown on a support, or it comprises a pre-existing diamond particle that was placed on the support. Such emitter bodies generally can be provided easily and at low cost, and typically have naturally occurring sharp geometrical features such as points and edges. We have also discovered that appropriately grown rare earth boride films of thickness 30 nm or less may substantially improve electron emission from emitter bodies, and some preferred embodiments of the invention comprise a cathode structure that comprises a thin layer of, e.g., LaB.sub.6 on the emitter bodies. Methods of making cathodes according to the invention are also disclosed.
Abstract:
A hybrid emitter exploits the electric field created by a rapidly depoled ferroelectric material. Combining the emission properties of a planar thin film diamond emitter with a ferroelectric alleviates the present technological problems associated with both types of emitters and provides a robust, extremely long life, high current density cathode of the type required by emerging microwave power generation, accelerator technology and display applications. This new hybrid emitter is easy to fabricate and not susceptible to the same failures which plague microstructure field emitter technology. Local electrode geometries and electric field are determined independently from those for optimum transport and brightness preservation. Due to the large amount of surface charge created on the ferroelectric, the emitted electrons have significant energy, thus eliminating the requirement for specialized phosphors in emissive flat-panel displays.
Abstract:
Applicants have discovered methods for making electron emitters using commercially available diamond particles treated to enhance their capability for electron emission under extremely low electric fields. Specifically, applicants have discovered that electron emitters comprising ultra-fine (5-10,000 nm) diamond particles heat-treated by a hydrogen plasma, can produce electron emission current density of at least 0.1 mA/mm.sup.2 at extremely low electric fields of 0.5-1.5 V/.mu.m. These field values are about an order of magnitude lower than exhibited by the best defective CVD diamond and almost two orders of magnitude lower than p-type semiconducting diamond. Emitters are preferably fabricated by suspending the ultra-fine diamond particles, preferably in the nanometer size range, in an aqueous solution, applying the suspension as a coating onto a conducting substrate such as n-type Si or metal, and then subjecting the coated substrate to a plasma of hydrogen, preferably at temperatures above 300.degree. C. for a period of 30 minutes or longer. The resulting emitters show excellent emission properties such as extremely low turn-on voltage, good uniformity and high current densities. It is further found that the emission characteristics remain the same even after the plasma treated diamond surface is exposed to air for several months.
Abstract translation:申请人已经发现使用经过处理以提高其在极低电场下电子发射能力的市售金刚石颗粒来制造电子发射体的方法。 具体地,申请人已经发现,包含由氢等离子体热处理的超细(5-10,000nm)金刚石颗粒的电子发射体可在0.5-1.5的极低电场下产生至少0.1mA / mm 2的电子发射电流密度 V /亩。 这些场值比由最好的有缺陷的CVD金刚石显示的低一个数量级,比p型半导体金刚石低两个数量级。 优选地,通过将优选在纳米尺寸范围的超细金刚石颗粒悬浮在水溶液中,将悬浮液作为涂层施涂到诸如n型Si或金属的导电基材上,然后对涂覆的基材 至氢的等离子体,优选在高于300℃的温度下持续30分钟或更长时间。 所得到的发射体显示出优异的发射特性,例如极低的导通电压,良好的均匀性和高的电流密度。 进一步发现即使在等离子体处理的金刚石表面暴露于空气几个月之后,发射特性也保持不变。