Abstract:
This disclosure provides systems, methods and apparatus, including computer programs encoded on computer storage media, for selecting display primary colors based on comparative energy consumption analysis. According to one aspect, an input is configured to receive image data corresponding to an image frame. The image data includes pixel data associated with at least three input contributing colors (ICCs). Subfield derivation logic is configured to derive for the received image frame a first set of color subfields corresponding to the ICCs and a second set of color subfields including a composite contributing color (CCC) subfield and a set of replacement ICC subfields derived based on the CCC subfield. Power management logic is configured to calculate an energy consumption comparison between the presentation sets of color subfields and to selectively cause the presentation of one of the sets of color subfields based on the calculated energy consumption comparison.
Abstract:
This disclosure provides systems, methods and apparatus for absorption film stacks. In one aspect, the absorption film stack is an interferometric absorption film stack that, for a selected wavelength of light, reduces light reflected from a surface of the stack by setting up a standing wave within the stack of materials. In some implementations, an absorbing layer may be placed at the peak of the standing wave interference pattern. The absorbing layer can be implemented to absorb selected wavelengths of light and substantially reduce the amount of unwanted reflections. In some other implementations, a reflective surface may be formed on the surface of the stack opposite the absorbing layer.
Abstract:
An apparatus includes an array of pixels formed on a substrate, a set of data drivers, and a controller. The set of data drivers is configured to output data signals to the pixels. The data signals are representative of subsequent states of each respective pixel. The controller is configured to allocate a first period of time and a second period of time for the data drivers. The first period of time is used to load data into the first set of the pixels, which are located within a first distance from the data drivers. The second period of time is used to load data into a second set of pixels, which are located at distance from the data drivers that is greater than the first distance. The second period of time is longer than the first period of time.
Abstract:
Light guides and backlight systems are disclosed that include one or more groups of geometric light redirectors whose arrangement and/or orientation across the surface of a light guide varies to improve light emission uniformity and to reduce visual artifacts.
Abstract:
This methods and devices described herein relate to displays and methods of manufacturing cold seal fluid-filled displays, including MEMS. The fluid substantially surrounds the moving components of the MEMS display to reduce the effects of stiction and to improve the optical and electromechanical performance of the display. The invention relates to a method for sealing a MEMS display at a lower temperature such that a vapor bubble does not form forms only at temperatures about 15° C. to about 20° C. below the seal temperature. In some embodiments, the MEMS display apparatus includes a first substrate, a second substrate separated from the first substrate by a gap and supporting an array of light modulators, a fluid substantially filling the gap, a plurality of spacers within the gap, and a sealing material joining the first substrate to the second substrate.
Abstract:
This disclosure provides systems, methods and apparatus for dissipating charge buildup within a display element with a conductive layer. The conductive layer is maintained in electrical contact with a fluid within the display element. The fluid, in turn, remains in contact with light modulators within the display elements. Any charge buildup that may be caused by the filling of the fluid during fabrication of the display device, or during operation of the light modulators can be dissipated by the conductive layer. Thus, by dissipating the charge buildup, the conductive layer reduces or eliminates electrostatic forces due to the charge buildup that may affect the operability of the light modulators. The display can include conductive spacers in an active display region of the display and a spacer-free region that allows the substrates to deform while retaining an electrical connection between the conductive layer and the spacers in the active display region.
Abstract:
This disclosure provides systems, methods and apparatus, including computer programs encoded on computer storage media, for enhancing display viewability in high ambient conditions without excessive increase in power consumption. In one aspect, a controller associated with the display device can be configured to obtain an indication of ambient light conditions from an ambient light sensor or from a host device hosting the display device. Upon receiving an image frame, the controller can derive a set of color subfields and determine a bit-depth value for each color subfield based on the obtained indication of current ambient light conditions and mapping data which maps ranges of ambient light to respective bit-depth values on a color subfield by color subfield basis. The controller can then generate a number of subframes for each color subfield based on the respective determined bit-depth value and cause the generated subframes to be displayed.
Abstract:
This disclosure provides systems, methods, and apparatus for supporting a bezel region of a display device. A display device can include a first substrate and a second substrate coupled by an edge seal. An array of shutter-based display elements can be positioned within an image forming region between the first and second substrates. A plurality of mechanical supports can be positioned within a bezel region outside of the image-rendering region and within the edge seal. Along a side of the bezel region that extends in a direction perpendicular to a direction of shutter motion, adjacent mechanical supports can be separated from one another by a gap that is longer than each of the mechanical supports in the direction perpendicular to the direction of shutter motion.
Abstract:
This disclosure provides devices and methods of reducing stiction during a fluid-filling process. A device can include two substrates with movable MEMS components on at least one of the substrates. The device can include a fluid between the two substrates and surrounding or at least partially surrounding the movable MEMS components, where the fluid can serve as a lubricant for the movable MEMS components. The fluid can be a liquid solution doped with a surface energy modifier, where the surface energy modifier includes a nonpolar functional group R. In some implementations, the nonpolar functional group R can be selected from the group consisting of: alkyl, aryl and naphthenic.
Abstract:
Implementations described herein relate to display devices including a metal circuit layer embedded in a dielectric layer configured to provide optical properties. Trenches in the dielectric layer may be etched so that the thickness of the metal circuit layer may extend away from other circuit layers. In some implementations, the metal circuit layer can include thick metal routing lines to send data to pixels of the display device. The thick metal routing lines can provide high conductivity, minimal voltage drop, and signal speed that is sufficiently high to write data to many pixels over long distances. In some implementations, the dielectric layer can be configured to absorb light. Examples of such dielectric layers include carbon-doped spin-on-glass dielectric layers.