Abstract:
An instrument for use with fluid which includes a mixing element, and a container to hold the fluid to be mixed, characterised in that the mixing element includes a sensor that assists to measure a parameter of fluid.
Abstract:
An agitation system including a motor that is capable of measuring the torque output of the motor required to mix a suspension. The motor is attached to an agitator which is placed in a suspension to be measured. The agitator is placed in the suspension and the agitation system is turned on for a period of time. This period determined by the type of agitator used and the characteristics of the suspension. When the suspension is well mixed and the torque measurement on the agitator becomes stable, the agitation system is stopped. The suspension is allowed to sit without agitation for a period of time and the agitation system is started again. After a period of time the agitation system is started and the amount of torque needed to begin turning the agitator is measured.
Abstract:
The present invention is related to an apparatus for massaging and/or tumbling of a product with a drum and a shaft with paddles rotated by a motor.
Abstract:
A viscosity controller automatically monitoring and controlling the viscosity of ink in a pad printing device on a continuous basis throughout the printing process includes a sealed ink cup having mounted thereon a motor with a paddle extending into the ink cup, a solvent tank in flow communication with the ink cup, and a valve for allowing selective amounts of the solvent to be added to the ink cup from the solvent tank. The viscosity of the ink in the cup creates torque on the paddle that affects the number of encoder pulses that are counted per time period by a motor encoder mounted to the motor, and the encoder pulses are counted and compared to a look up table stored in the microprocessor of the controller to determine if the valve should be opened to add diluting agent to the ink cup so that the ink viscosity can be maintained at a preset or predetermined value.
Abstract:
A method of preparing a mortar composition, comprising mixing of mortar materials comprising at least 25 to 45 parts by weight of high-early-strength portland cement, 40 to 60 parts by weight of sand, 0.05 to 0.12 parts by weight of polycarboxylic acid-based powdered water reducing agent, and 10 to 25 parts by weight of water, and not comprising any organic adhesives. Mixing of the mortar materials is achieved by agitating the same in an agitator until agitating load rapidly decreases. The mortar composition prepared in accordance with this invention has excellent ability to infiltrate into the surface to be adhered, and high bonding strength after hardening.
Abstract:
A method for the continuous phase conversion of a product in a kneader mixer, into which the product is introduced, said mixer comprising kneading elements that are mounted on at least one shaft. The product is back-mixed until a predefined viscosity of the product is determined by measurement of the torque of the shaft, or a product with a predetermined viscosity that has already been achieved is back-mixed, the kneader mixer is then switched to a continuous mode, in which optionally and additional component is added and the product is subsequently transported to the discharge point.
Abstract:
Devices and methods for controlling and monitoring the progress and properties of multiple reactions are disclosed. The method and apparatus are especially useful for synthesizing, screening, and characterizing combinatorial libraries, but also offer significant advantages over conventional experimental reactors as well. The apparatus generally includes multiple vessels for containing reaction mixtures, and systems for controlling the stirring rate and temperature of individual reaction mixtures or groups of reaction mixtures. In addition, the apparatus may include provisions for independently controlling pressure in each vessel, and a system for injecting liquids into the vessels at a pressure different than ambient pressure. In situ monitoring of individual reaction mixtures provides feedback for process controllers, and also provides data for determining reaction rates, product yields, and various properties of the reaction products, including viscosity and molecular weight Computer-based methods are disclosed for process monitoring and control, and for data display and analysis.
Abstract:
Devices and methods for controlling and monitoring the progress and properties of multiple reactions are disclosed. The method and apparatus are especially useful for synthesizing, screening, and characterizing combinatorial libraries, but also offer significant advantages over conventional experimental reactors as well. The apparatus generally includes multiple vessels for containing reaction mixtures, and systems for controlling the stirring rate and temperature of individual reaction mixtures or groups of reaction mixtures. In addition, the apparatus may include provisions for independently controlling pressure in each vessel, and a system for injecting liquids into the vessels at a pressure different than ambient pressure. In situ monitoring of individual reaction mixtures provides feedback for process controllers, and also provides data for determining reaction rates, product yields, and various properties of the reaction products, including viscosity and molecular weight. Computer-based methods are disclosed for process monitoring and control, and for data display and analysis.
Abstract:
A device is provided which determines the end of the processsing time for hardening masses, in particular dental molding masses. The device comprises a display unit and a sensor unit which record the change in at least one of the rheological properties of the mass. A method that can be used with such a device is described.
Abstract:
In a method for controlling the mixing of dough ingredients in a mixer, dough ingredients are mixed. The amount of power supplied to the mixer is measured in specified time intervals. Data relating to the amount of power supplied are stored. Based on the stored data, a decline in the amount of power supplied to the mixer is identified and the mixer mixes the dough ingredients for a predetermined period of time after the decline is identified. A mixer of the present invention includes a mixing device, a motor coupled to the mixing device, a power source coupled to the motor, and a mixing-time controller.