Abstract:
A wind power turbine control method, the wind power turbine having an electric machine, in turn having a stator, a rotor rotatable about an axis of rotation with respect to the stator, and a mechanical bearing assembly configured to couple the rotor in rotary manner to the stator; the stator having at least one winding to interact electromagnetically with the rotor; and the control method including the steps of: estimating at least one quantity selected from a group including a distance between the rotor and the stator, the variation over time in the distance, and misalignment between the rotor and stator; defining a localized additional magnetic force as a function of the selected quantity; and regulating the selected quantity using the localized additional magnetic force defined.
Abstract:
Disclosed herein is a switched reluctance motor comprising: a rotor having a shaft disposed at a central portion thereof and having salient poles formed at an outer circumference thereof; a stator having the rotor rotatably installed therein while forming a gap and having salient poles facing the salient poles of the rotor; and an extraction pressure decreasing unit separating the rotor and the stator from a mold, wherein the rotor and the stator are made of a soft magnet composite (SMC).
Abstract:
An arrangement to ensure an air gap in an electrical machine is provided. The electrical machine has a stator arrangement and a rotor arrangement, the rotor arrangement rotating around a longitudinal axis. An air gap is defined by a distance between parts of the rotor arrangement and parts of the stator arrangement, wherein the parts of the stator arrangement are opposite to the parts of the rotor arrangement along a certain length. The stator arrangement includes a lamination stack which is constructed to support a winding of a stator-coil, and the rotor arrangement includes a plurality of permanent magnets. A cross section of the air gap changes along the certain length such that the air gap is not uniform in view to the certain length. The cross section of the air gap is configured by a change in a shape of the lamination stack along the certain length.
Abstract:
In one embodiment, a motor has a rotor with an approximated ellipsoid shape defined by a plurality of lattice lines and a plurality of lattice points. The motor has a matching stator that is configured to be utilized in conjunction with the approximated ellipsoid shaped rotor and to accommodate the approximated ellipsoid shaped rotor. The motor may also includes a housing unit configured to hold the matching stator that is utilized in conjunction with the approximated ellipsoid shaped rotor, and an enclosure lid configured to be used by the housing unit. The enclosure lid may be configured to hold the rotor having the approximated ellipsoid shape with a bearing.
Abstract:
A synchronous motor includes a stator with a stator winding, and a rotor on which magnetic poles made of permanent-magnetic material are formed, each pole having a cambered outer contour, especially an outer contour cambered radially outwards, in particular, 2×p individual poles being salient in the circumferential direction, p being the number of pole pairs.
Abstract:
An apparatus and corresponding method for maintaining an air gap between a stator and rotor in an electro-mechanical energy converter is provided. The apparatus includes a structural sleeve and a plurality of stator sections attached to an inner surface of the structural sleeve. A hub is enclosed by the structural sleeve and is concentric with the structural sleeve. A plurality of rotor sections is flexibly coupled to the hub and is enclosed by the structural sleeve. A rail system is positioned within the structural sleeve and is concentric with the structural sleeve. The rail system guides the rotor sections in a substantially circular path and defines an air gap between the plurality of stator sections and plurality of rotor sections.
Abstract:
A method for handling a bearingless machine into a driveline includes coaxially aligning a rotor subassembly and a stator subassembly such that first and second circumferential track portions define a substantially complete first circumferential track in communication with a first portal. A first fixture band is inserted into the first circumferential track via the first portal to substantially maintain axial and radial alignment of the rotor subassembly relative to the stator subassembly.
Abstract:
An axial-gap rotating electrical machine in which the distance of the air gap between a rotor and a stator can be accurately controlled is provided. A large diameter portion and a small diameter portion are formed on a rotating shaft and a stepped portion is formed therebetween. A rotor yoke is secured thereon and the position of the rotor is determined. The position of a bearing secured in a housing for rotatably supporting the rotating shaft is determined by a boss portion of the rotor yoke. The position of the housing is determined by the position of the bearing and the securing position of the stator is determined by a stepped portion formed on the inner circumference of the housing. Thus the position of the housing relative to the rotating shaft can be determined from the position of the rotor and the securing position of the stator can be determined.
Abstract:
In a method an inner segment is first pre-assembled on each of a number of outer segments by at least one fixing element, so as to produce a plurality of segment modules having each a predetermined air gap between the inner segment and the outer segment. The inner segments and the outer segments are assigned to the rotor or stator of the electrical machine. The inner segments of the plurality of segment modules are fastened to an inner assembly device (for example a hub). The outer segments of the plurality of segment modules are fastened to an outer assembly device (for example a supporting structure). Finally, the fixing elements between the inner segments and the outer segments are removed.
Abstract:
An electric motor includes an upper housing, a lower housing including a flange for mounting the upper housing thereon and a cone-shaped portion extending away from the flange and the upper housing. The electric motor further includes a stator assembly formed of a first core having a first height and fitted into the upper housing, a rotor assembly rigidly joined to a shaft to rotate therewith within the stator assembly and formed of a second core having a second height, and a hub connected to a lower end of the shaft to rotate therewith in relation to the cone-shaped portion. The hub is configured to secure an operable implement to the electric motor. The second height is greater than the first height.