Abstract:
Fabrication of a field-effect transistor is performed on a substrate comprising a film made from first semiconductor material, a gate dielectric covered by a gate electrode, source and drain areas separated by the gate electrode, a protection layer covering gate electrode and source and drain areas, and an access hole to the source area and/or to drain area. Metallic material is deposited in the access hole in contact with the first semiconductor material of the source and/or drain area. An electrically conducting barrier layer that is non-reactive with the first semiconductor material and with the metallic material is deposited before reaction of metallic material with first semiconductor material. Transformation heat treatment of the metallic material with the semiconductor material is performed to form a metallic material having a base formed by the semiconductor material generating a set of stresses on a conduction channel arranged between the source and drain areas.
Abstract:
A three-dimensional integrated structure includes a first integrated circuit having a substrate assembled in an interlocking manner with a second integrated circuit having a substrate. The substrate of the first integrated circuit comprises first pores separated by first partitions, and the substrate of the second integrated circuit comprises second pores separated by second partitions. The first partitions interlock with the second pores and the second partitions interlock with the first pores so as to define at least one region bounded by the two substrates. A phase-change material is retained within the at least one region.
Abstract:
An ESD protection device for an electro-optical device may include an optical waveguide segment being in semiconductor material and including a central zone of a first conductivity type, and first and second wings of a second conductivity type different from the first conductivity type and being integral with the central zone. The ESD protection device may include a first conduction terminal on the first wing for defining a first protection terminal, a second conduction terminal on the second wing for defining a second protection terminal, and a resistive contact structure of the first conductivity type having a transverse arm integral with the central zone, and an end in ohmic contact with the first conduction terminal, the resistive contact structure being electrically insulated from the first wing.
Abstract:
A MOS transistor having a gate insulator including a dielectric of high permittivity and a conductive layer including a TiN layer, wherein the nitrogen composition in the TiN layer is sub-stoichiometric in its lower portion and progressively increases to a stoichiometric composition in its upper portion.
Abstract:
A memory device may include an access transistor, and a memory cell configured to store an item of information. The memory cell may include first and second electrodes configured to have different optoelectronic states corresponding respectively to two values of the item of information, and to switch between the different optoelectronic states based upon a control signal external to the memory cell, the different optoelectronic states being naturally stable in an absence of the control signal. The memory cell may also include a solid electrolyte between the first and second electrodes.
Abstract:
A memory cell including a via made of a phase-change material arranged between a lower electrode and an upper electrode, wherein the via includes a central region laterally surrounded with a peripheral region, the crystallization and melting temperatures of the central region being respectively lower than those of the peripheral region.
Abstract:
An integrated circuit includes an NMOS transistor and a PMOS transistor on different regions of an SOT substrate. Each transistor includes a gate region, multilayer lateral insulating regions against the sides of the gate region while also on the substrate. Each multilayer lateral insulating region includes an inclined portion sloping away from the substrate. Source and drain regions are on the substrate and are separated from the sides of the gate region by the corresponding multilayer lateral insulating region. The source and drain regions have an inclined portion resting against the inclined portion of the the lateral insulating region.
Abstract:
An electro-optical phase shifter to be located in an optical waveguide may include a rib of a semiconductor material extending along a length of the optical waveguide and a control structure configured to modify a concentration of carriers in the rib according to a control voltage present between first and second control terminals of the phase shifter. The control structure may include a conductive layer covering a portion of the rib and electrically connected to a first of the control terminals. An insulating layer may be configured to electrically isolate the conductive layer from the rib.
Abstract:
A method for producing at least one deep trench isolation in a semiconductor substrate including silicon and having a front side may include forming at least one cavity in the semiconductor substrate from the front side. The method may include conformally depositing dopant atoms on walls of the cavity, and forming, in the vicinity of the walls of the cavity, a silicon region doped with the dopant atoms. The method may further include filling the cavity with a filler material to form the at least one deep trench isolation.
Abstract:
A photodiode includes at least one central pad arranged on a light-receiving surface of a photodiode semiconductor substrate. The pad is made of a first material and includes lateral sidewalls surrounded by a spacer made of a second material having a different optical index than the first material. The lateral dimensions of the pad are smaller than an operating wavelength of the photodiode. Both the first and second materials are transparent to that operating wavelength. The pads and spacers are formed at a same time gate electrodes and sidewall spacers of MOS transistors are formed.