Abstract:
An electrodeless lamp which operates with a high efficiency and with a lower cooling requirement. The bulb is rotated at a high speed which results in a substantial increase in efficiency. Because more of the input energy is converted to light, and less to heat, the pressure of the cooling fluid source may be reduced, resulting in a less noisy system.
Abstract:
An ion mobility spectrometer or other ion apparatus has two or three grid electrodes 51 and 52; 151 to 153; 106 and 107; 106′ and 107′ extending laterally of the ion flowpath. An asymmetric waveform with a dc compensating voltage is applied between the electrodes to produce a field parallel to the ion flow path that affects ions differently according to their field-dependent mobility. This filters or delays different ions selectively in their passage to an ion detector 11, 111, 111′ to facilitate discrimination between ions that would otherwise produce a similar output.
Abstract:
A user interacts with a data storage service which enables one or more feeds from video and or web cameras to be streamed to the data storage service. The data storage service then provides storage and/or playback services to the subscriber (e.g., for a monthly fee or a usage fee). Once the video streams have been established between at least one camera and the data storage facility, the user may access the recorded data from any one of several sources, such as a world wide web browser or a cellular phone). The interface may provide a matrix of displays such that the user can see multiple areas or multiple parts of the same area simultaneously.
Abstract:
An ion mobility spectrometer or other ion apparatus has two or three grid electrodes 51 and 52; 151 to 153; 106 and 107; 106′ and 107′ extending laterally of the ion flowpath. An asymmetric waveform with a dc compensating voltage is applied between the electrodes to produce a field parallel to the ion flow path that affects ions differently according to their field-dependent mobility. This filters or delays different ions selectively in their passage to an ion detector 11, 111, 111 to facilitate discrimination between ions that would otherwise produce a similar output.
Abstract:
A dual blood flow monitoring system includes an electronic first sensor, an electronic second sensor, and an electronic monitoring device in communication with the first sensor and the second sensor. The first sensor monitors a first blood flow and the second sensor monitors a second blood flow. The electronic monitoring device is operative to receive signals from the sensors and to calculate and display a differential value representing a difference between the at least one parameter of the first blood flow and the at least one parameter of the second blood flow. A dual blood flow monitoring system is provided in a method for simultaneously monitoring extracorporeal arterial and venous blood flows, in which the sensors are placed in communication with respective tubing lines carrying the arterial and venous blood flows.
Abstract:
A power generation system is disclosed for supplying power to an electrical grid. The system comprises a synchronous machine and coupling means for coupling the synchronous machine to a prime mover. Control means are provided to control the system such that the system is selectively operable in two modes. In the first mode, the synchronous machine is coupled to the prime mover and acts as a synchronous generator to supply power to the grid. In the second mode the synchronous machine is decoupled from the prime mover and acts as a synchronous condenser. This can allow parameters of the grid, such as power factor and voltage, to be adjusted.
Abstract:
IMS apparatus has a preconcentrator (20) connected at the inlet (2) of an IMS detector (1) such that all gas supplied to the detector flows through the preconcentrator. The preconcentrator comprises a metal tube (21) having a layer of silicone rubber (24) exposed on its inner surface (25). An electrical resistance heating element (22) extends under the silicone rubber layer (24) and is connected to a power source (23) such that the silicone rubber layer can be periodically heated to desorb substances absorbed by the layer and release them to flow to the IMS detector 1 at a higher concentration. The silicone rubber (24) can operate in the desorption phase in the presence of air without degradation.
Abstract:
An IMS or other analytical instrument has a corona discharge needle (20) to ionize sample gases or vapours. A gate (3) is opened or closed to admit or prevent entry of the ions produced by the corona discharge to a drift chamber (4). The operation of the corona discharge needle (20) and the gate (3) are controlled such that the gate is open during at least two discharges, to admit faster ions produced by the most recent discharge together with slower ions produced by an earlier discharge.
Abstract:
An enterprise computing environment such as a corporate web portal includes an intermediary server, a sign on service, and one or more backend enterprise systems managed by resource managers. Before or after user primary logon, which establishes a user primary account identity, the intermediary server uses its own identity to authenticate to the sign on service its right to retrieve user secondary account identities with respect to the backend enterprise systems. Retrieved secondary account identities are then used by the intermediary server to perform user secondary logons to respective resource managers in the environment. The intermediary server also manages the passing of resource requests and associated replies between the user and the resource managers.
Abstract:
A method is presented for obtaining information from a client for the benefit of a server using a particular communication protocol that the server does not implement. A primary server receives a client-generated request, and the primary server sends a first request to a secondary server as part of the processing of the client-generated request. While processing the first request, the secondary server determines a need for data obtainable from a client application that supports user interaction using a communication protocol for which the secondary server is not configured to implement. The secondary server sends a second request to the primary server for obtaining data that results from using the communication protocol. The secondary server subsequently receives the resulting data and continues to process the first request using the resulting data, after which the secondary server returns a response for the first request to the primary server.