Abstract:
An automated and integrated substrate inspecting apparatus for performing an EBR/EEW inspection, a defect inspection of patterns and reticle error inspection of a substrate includes a first stage for supporting a substrate; a first image acquisition unit for acquiring a first image of a peripheral portion of the substrate supported by the first stage; a second stage for supporting the substrate; a second image acquisition unit for acquiring a second image of the substrate supported by the second stage; a transfer robot for transferring the substrate between the first stage and the second stage; and a data processing unit, connected to the first image acquisition unit and the second image acquisition unit, for inspecting results of an edge bead removal process and an edge exposure process performed on the substrate using the first image, and for inspecting for defects of patterns formed on the substrate using the second image.
Abstract:
An apparatus for examining spectral characteristics of an object may include a chuck configured to support and releasably fix the object, wherein the chuck is larger than the object, a first light source assembly integral with the chuck and configured to illuminate a bottom surface of the object with light having a predetermined spectrum and intensity, and a transmission analysis unit for collecting and analyzing light transmitted through the object. The first light source assembly may include multiple and/or adjustable light sources. A second light source assembly may illuminate a top surface of the object, and a reflection analysis unit may collect resultant reflected light.
Abstract:
A method of classifying defects of an object includes irradiating multi-wavelength light onto the object, splitting light reflected from the object into light beams, each of the light beams having different wavelengths, obtaining image information of the object based on each of the light beams, forming a characteristic matrix that represent the wavelengths and the image information, and analyzing the characteristic matrix to determine types of the defects on the object. Thus, the defects may be accurately classified using a difference between reactivity of each of the defects in accordance with variations of the wavelengths and inspection conditions.
Abstract:
A method for obtaining an image using a selective combination of wavelengths of light includes dispersing a light in accordance with wavelength bands of the light using a dispersing member, irradiating the dispersed light onto an object to measure reflectivities of the light reflected from the object in accordance with the wavelength bands of the light, comparing reflectivity differences between an objective region and a peripheral region of the object, selecting wavelength bands having the reflectivity differences indicated as either positive values or negative values, adjusting the dispersing member to transmit only the light having the selected wavelength bands, passing light only having the selected wavelength bands through the dispersing member to irradiate the light that has passed through the dispersing member onto the object, taking photographs of the object using the irradiated light, and superposing the photographs of the object to obtain the image of the object.
Abstract:
A substrate measuring apparatus includes a reference value storage unit, an electron irradiator, a current measuring device, and a property value calculating device. The reference value storage unit stores data on the relationship between current flow in a sample substrate with a contact hole of known characteristics that is irradiated by an electron beam. The current measuring device measures current flow in a test substrate. The property value calculating device calculates the property value of the contact hole formed in a material layer of the test substrate using the current flow in the test substrate and the data stored in the reference value storage unit. The property values of the contact hole may be a surface area of underlying substrate exposed by a contact hole or an amount of residual material remaining in the contact hole.
Abstract:
An apparatus for measuring contamination of a semiconductor substrate includes a chuck for loading a substrate, a position detection means for recognizing a front surface of the loaded substrate to obtain position data of a portion of the substrate to be measured, a first driving part for moving the chuck in accordance with the position data to measure a rear portion of the substrate, and a surface measurement means disposed under the chuck for selectively measuring metal contamination of the substrate at the rear portion of the substrate. In operation, the substrate is loaded onto a chuck, position data of a portion of the substrate to be measured is obtained by recognizing patterns formed on the substrate, the substrate is then moved in accordance with the position data to measure a rear portion of the substrate, and metal contamination is selectively measured at the rear portion of the substrate.
Abstract:
A method for inspecting a polishing pad, an apparatus for performing the method, and a polishing device adopting the apparatus for preventing wafer defects. Polishing pad defects are detected by comparing optical data from a normal polishing pad, which does not cause wafer defects, with optical data from a polishing pad to be inspected. The respective optical data are obtained by radiating a beam into the polishing pad and then collecting and analyzing a beam reflected from the polishing pad.
Abstract:
Example embodiments relate to an apparatus and method for inspecting a substrate defect. The substrate defect inspecting apparatus includes a substrate, a light source emitting an infrared beam to the substrate, a detector detecting the infrared beam reflected from the substrate, and a defect analyzer receiving first information and second information from the detector and analyzing defects existing in the substrate. According to at least one example embodiment, the second information is acquired during a later process than the first information.
Abstract:
In an embodiment of a method of inspecting a substrate, the substrate on which minute structures are formed is divided into a plurality of inspection regions. A main inspection region among the inspection regions is selected. A main image of the main inspection region and sub-images of sub-inspection regions adjacent to the main inspection region are obtained. An average image of the main image and the sub-images is obtained. The average image is then compared with the main image to detect defects in the main inspection region. Gray levels may be used. The average image may have improved quality so that the defects in the selected inspection region may be rapidly and accurately detected. This process has an improved reliability. Further, the number of inspecting processes for the substrate may be reduced. And a line for the inspection process may be automated so that a worker-free line may be established.
Abstract:
The present invention is directed to a wafer holder and a related wafer conveyor system. The wafer holder holds a wafer and moves horizontally within a chamber. A contact area between the wafer and the wafer holder is reduced, and potential contaminants generated by ear between components of the wafer holder are trapped by an airtight cover. Since the wafer holder moves horizontally while being fixed to a guide rail, the wafer conveyor system reduces friction between the guide rail and the wafer holder.