Abstract:
A video network includes public kiosks having digital storage capacity. Centralized inventory control manages the video files stored at individual kiosks or network LANs. A user requests a multimedia file for download, and selects various ancillary files and control features, such as languages, subtitles, control of nudity, etc. The requested file is encrypted according to an encryption key, watermarked, and downloaded from a high-speed port of a public kiosk to a hand-held proprietary high speed memory device of a user. Payment is received at the time of request or at the time of download, and royalties are distributed by the video network to copyright holders. Computer applications or playback devices allow users to store and/or play video files that have been downloaded to a hand-held device while managing and enforcing digital rights of content providers through the watermarking and/or encryption.
Abstract:
The present invention is an automated microfluidic chip processing apparatus that includes a deck for holding at least one microfluidic chip and capable of being accessed by a liquid handling system, a fluid control system, and a detection system, wherein a chip handling device transports the chip from the deck to the fluid control system and the detection system. The present invention also includes a chip for use with an automated microfluidic chip processing apparatus, and a method for processing a microfluidic chip using such an apparatus.
Abstract:
The present invention is generally directed to improved methods, structures and systems for interfacing microfluidic devices with ancillary systems that are used in conjunction with such devices. These systems typically include control and monitoring systems (620) for controlling the performance of the processes carried out within the device, e.g., monitoring and controlling environmental conditions and monitoring results of the processes performed, e.g., detection.
Abstract:
A double check valve (10) with two separate elements (20, 25) individually movable to close the valve and collectively movable to open the valve. The separate elements are independently closing the valve, and collectively controllable to open the valve, to allow pressure release or to allow injection of fluid (e.g. lubricant). In an example, the double check valve includes two separate check valves with a stinger element (30) between them which is operable to internally sting the one check valve when (e.g. by action of) the other check valve is stung by a user (e.g. using a stinger means) thereby to open both check valves individually and the double check valve as a whole.
Abstract:
Embodiments of the invention comprise microfluidic devices, instrumentation interfacing with those devices, processes for fabricating that device, and methods of employing that device to perform PCR amplification. Embodiments of the invention are also compatible with quantitative Polymerase Chain Reaction (“qPCR”) processes. Microfluidic devices in accordance with the invention may contain a plurality of parallel processing channels. Fully independent reactions can take place in each of the plurality of parallel processing channels. The availability of independent processing channels allows a microfluidic device in accordance with the invention to be used in a number of ways. For example, separate samples could be processed in each of the independent processing channels. Alternatively, different loci on a single sample could be processed in multiple processing channels.
Abstract:
A container is provided for shipping and storing a pre-wetted and pre-conditioned microfluidic “sipper” chip. The container contains both dry compartments and wet compartments. A base contains a fluid-filled reservoir configured to house the capillaries. The opening of the reservoir is sealed with an O-ring. The plastic mount of the chip rests on the base in a dry compartment. The upper surface of the chip contains several wells containing fluid. A gasket is provided with plugs configured to be disposed within and seal the wells. Alternatively, the wells are first sealed with a foil film adhered to the well openings with an adhesive and a gasket is disposed between the foil and a cover, which is removably attached to the base. When the cover is closed, the gasket and O-ring seal the wet compartments to prevent leakage and to slow evaporation.
Abstract:
A horizontal continuous casting apparatus comprising an inert gas-purged resistance-heated type furnace 1, a crucible 6 for containing molten metal and having an outlet 8 for molten metal, coupled to a casting die 14, and a first clamping device 28-30, 32 for securing the die 14 in sealing communication with the crucible 6. A carrier adaptor 44 of an oxidation resistant refractory material comprises: a feed nozzle 50 between the crucible outlet 8 and a casting die inlet 39, a female mounting portion 52 for receiving, in sealing inter-engagement, a male mounting portion 54 of the die 14, and sealing means 58 for inter-engagement with the furnace wall 34 around the aperture 36. A second clamping device 68, 70, 72 is provided for releasably securing the carrier adaptor 44, in sealing inter-engagement, to the crucible 6 and furnace wall 34. The first clamping device 28-30, 32 releasably secures the casting die 14 to the carrier adapter 44.
Abstract:
In a system for operation or handling of a laboratory microchip (41) for chemical processing or analysis, the microchip (41) is mounted in a first physical unit (42). The microchip (41) is arranged on a mounting plate, such that it is readily accessible from the top and thus the fitting and removal of the microchip is considerably simplified. Furthermore, the first physical unit (42) comprises an optical device (43) for contactless detection of the results of the chemical processes conducted on the microchip. The supply systems necessary for the operation of the microchip are arranged in a module unit that has a separable connection with a second physical unit. The proposed modular layout enables ease of interchangeability of the required supply systems and thus, overall, ease of adaptability of the proposed system for various types of microchips.
Abstract:
Laminates having microfluidic structures disposed between sheets of the laminate are provided. The microfluidic structures are raised on a sheet of laminate, typically by printing the structure on the sheet. Printing methods include Serigraph, ink-jet, intaligo, offset printing and thermal laser printing.
Abstract:
A double check valve (10) with two separate elements (20, 25) individually movable to close the valve and collectively movable to open the valve. The separate elements are independently closing the valve, and collectively controllable to open the valve, to allow pressure release or to allow injection of fluid (e.g. lubricant). In an example, the double check valve includes two separate check valves with a stinger element (30) between them which is operable to internally sting the one check valve when (e.g. by action of) the other check valve is stung by a user (e.g. using a stinger means) thereby to open both check valves individually and the double check valve as a whole.