Abstract:
The present invention is an automated microfluidic chip processing apparatus that includes a deck for holding at least one microfluidic chip and capable of being accessed by a liquid handling system, a fluid control system, and a detection system, wherein a chip handling device transports the chip from the deck to the fluid control system and the detection system. The present invention also includes a chip for use with an automated microfluidic chip processing apparatus, and a method for processing a microfluidic chip using such an apparatus.
Abstract:
A portable medical analyzer comprising a sampling module with a sample port for receiving body fluid, an assay sensor module for analysis of the body fluid, an analytical detector module with detection of information from the assay, and a communications module for transferring the information to a remote location via a wired or wireless network.
Abstract:
A container is provided for shipping and storing a pre-wetted and pre-conditioned microfluidic “sipper” chip. The container contains both dry compartments and wet compartments. A base contains a fluid-filled reservoir configured to house the capillaries. The opening of the reservoir is sealed with an O-ring. The plastic mount of the chip rests on the base in a dry compartment. The upper surface of the chip contains several wells containing fluid. A gasket is provided with plugs configured to be disposed within and seal the wells. Alternatively, the wells are first sealed with a foil film adhered to the well openings with an adhesive and a gasket is disposed between the foil and a cover, which is removably attached to the base. When the cover is closed, the gasket and O-ring seal the wet compartments to prevent leakage and to slow evaporation.
Abstract:
A device for puncturing the skin of a patient. The device includes first and second protrusions, each protrusion puncturing the skin when pressed against the skin. The first and second protrusions are arranged such that the first protrusion punctures the skin at a location less than a predetermined distance from the second protrusion. The distance is chosen to be less than the discriminatable distance between distinct pain perception points in the patient, such that the patient perceives a single puncture when the first and second protrusions puncture the skin. In one embodiment of the invention, the device includes a base lip that applies a lateral force to the skin when the base lip is pressed against the skin. In this embodiment, the protrusions are pressed into the skin as the base lip is pressed against the skin.
Abstract:
A multi-shaft apparatus for incising a substrate of soft resilient material such as a body tissue. The incising apparatus includes two or more incision shafts each having a distal edge. The shafts are not affixed to each other and are allowed to slide against each other to drive the distal edges alternately against the substrate to incise the substrate. In the case of incising a body tissue, such alternate motion would result in less pain to the patient than a puncture resulting from a sharp jab by a sharp shaft of similar size to the shafts.
Abstract:
An ultrasound system and method for intravascular ultrasonic imaging includes an array of beacons that are fixed to direct ultrasonic energy toward an imaging transducer, with individual beacons being identifiable in order to determine the angular position of the imaging transducer. Based upon the data related to beacon identification, operation of the imaging device is adaptively adjusted in order to compensate for variations in angular velocity of the transducer. Adaptive compensation may be performed by adjusting the pulse repetition rate of transmitted ultrasonic energy, by adjusting the scan conversion algorithm or mapping reflected ultrasonic energy, or by varying control of the drive structure for rotating the transducer. The beacons are preferably piezoelectrically active, but passive beacons may also be used. Position identification may be performed by techniques including amplitude sensing, phase sensing, pulse length sensing, and frequency sensing. As an alternative to rotation of the transducer, ultrasonic signals may be formed at a proximal end of a probe and then conducting the energy to the distal end via a waveguide.
Abstract:
Piezoelectric elements in a transducer array are individually excited and used to sense the back-scattered signal from fluid flowing within an interrogation volume. The array is preferably a 2-D phased array with a pitch no greater than one-half the acoustic wavelength of the interrogation signal. By activating the transducer elements as a pattern of concentric rings as viewed from a point of interrogation, and by suitable phasing and range-gating of an interrogation signal, a substantially spherical interrogation volume (SIV) is created. The return signal from the SIV provides an isotropic indication of the speed of flow of the fluid. The focussing distance along an interrogation axis can be changed by changing either the size of the aperture created by the pattern of activated elements or their relative phasing. The interrogation direction can be angled off-axis by activating the transducer elements in a pattern of concentric ellipses. The interrogation axis itself may also be moved off-center by translating the pattern of activated elements. By deforming the activation pattern of the transducer elements from concentric rings to concentric ellipses, the long axes of ellipsoidal interrogation volumes (EIV) can be rotated. The back-scattered signals from these rotated ellipsoidal interrogation volumes indicate the direction of fluid flow.
Abstract:
A tunable ultrasonic probe includes a body of a first piezoelectric material acoustically coupled in series with a body of a second piezoelectric material. The second piezoelectric material has a Curie temperature that is substantially different than that of the first piezoelectric material. Preferably, the first piezoelectric material is a conventional piezoelectric ceramic, such as lead zirconate titanate, while the second piezoelectric material is a relaxor ferroelectric ceramic, such as lead magnesium niobate. At an operating temperature of the probe, the first piezoelectric material has a fixed polarization. In contrast, the second piezoelectric material has a polarization that is variable relative to the fixed polarization of the first piezoelectric material. A preferred novel arrangement of electrodes electrically couples the bodies in parallel with one another. An oscillating voltage for exciting the acoustic signals in the probe is coupled with the electrodes. The polarization of the second piezoelectric material is variably controlled by a bias voltage coupled with the electrodes. In a preferred embodiment, the bias voltage has a reversible electrical polarity for selecting one resonant frequency from a plurality of resonant frequencies of the probe. In another preferred embodiment, the bias voltage source has a variable voltage level for selecting at least one of a plurality of resonant frequencies of the probe.
Abstract:
A method of patterning interconnect lines on a flexible membrane film of piezoelectric material includes securing the membrane film to a temporary support structure to allow direct patterning of the interconnect lines. A barrier plane is deposited onto the membrane film. A photoresist then coats the barrier plane. In a subsequent step of photolithographically exposing the photoresist, the barrier plane acts as a screen to prevent radiation from reaching the membrane film. The barrier film is also used as a focusing and alignment structure during photolithographic exposure. Optionally, the resulting structure is soaked in chlorobenzene, with the barrier plane functioning to prevent diffusion of the chlorobenzene through the back side of the porous membrane film to form undesired development-retarding regions of the photoresist. Openings are formed in the photoresist during a development step. A metallic interconnect layer is then deposited. A portion of the interconnect layer enters the openings in the photoresist for deposit onto the barrier plane. The barrier plane ensures proper adhesion of the interconnect layer. Lift-off techniques remove the photoresist and unwanted portions of the interconnect layer. The remaining portions of the interconnect layer provide an etch mask for patterning the barrier plane.
Abstract:
An ultrasonic transducer for controlling an elevation aperture utilizes the electric field-induced polarization properties of relaxor ferroelectric materials. The Curie temperature of the material is typically close to room temperature, so that the application of a bias voltage provides piezoelectric activity. By varying the thickness of a dielectric layer that spaces apart the relaxor ferroelectric material from an electrode or providing the bias voltage, the piezoelectric activity can be tailored. That is, degrees of polarization of the relaxor ferroelectric material are varied spatially in correspondence with changes in thickness of the dielectric layer. The effective elevation aperture of the transducer can be varied by adjusting the bias voltage.